IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3179-d803092.html
   My bibliography  Save this article

Impact of the COVID-19 Pandemic on Biomass Supply Chains: The Case of the Canadian Wood Pellet Industry

Author

Listed:
  • Bruno Gagnon

    (Economic Analysis Division, Canadian Forest Service, Natural Resources Canada, Ottawa, ON K1A 0E4, Canada)

  • Heather MacDonald

    (Great Lakes Forestry Centre, Canadian Forest Service, Natural Resources Canada, Sault Ste. Marie, ON P6A 2E5, Canada)

  • Emily Hope

    (Great Lakes Forestry Centre, Canadian Forest Service, Natural Resources Canada, Sault Ste. Marie, ON P6A 2E5, Canada)

  • Margaret Jean Blair

    (Economic Analysis Division, Canadian Forest Service, Natural Resources Canada, Ottawa, ON K1A 0E4, Canada)

  • Daniel W. McKenney

    (Great Lakes Forestry Centre, Canadian Forest Service, Natural Resources Canada, Sault Ste. Marie, ON P6A 2E5, Canada)

Abstract

The ongoing COVID-19 pandemic has disrupted global economic activity in all sectors, including forest industries. Changes in demand for forest products in North America over the course of the pandemic have affected both primary processors and downstream industries reliant on residues, including wood pellet producers. Wood pellets have become an internationally traded good, mostly as a substitute for coal in electricity generation, with a significant proportion of the global supply coming from Canadian producers. To determine the effect of the COVID-19 pandemic on the Canadian wood pellet industry, economic and market data were evaluated, in parallel with a survey of Canadian manufacturers on their experiences during the first three waves of the pandemic (March 2020 to September 2021). Overall, the impact of the pandemic on the Canadian wood pellet industry was relatively small, as prices, exports, and production remained stable. Survey respondents noted some negative impacts, mostly in the first months of the pandemic, but the quick recovery of lumber production helped to reduce the impact on wood pellet producers and ensured a stable feedstock supply. The pandemic did exacerbate certain pre-existing issues, such as access to transportation services and labour availability, which were still a concern for the industry at the end of the third wave in Canada. These results suggest that the Canadian wood pellet industry was resilient to disruptions caused by the pandemic and was able to manage the negative effects it faced. This is likely because of the integrated nature of the forest sector, the industry’s reliance on long-term supply contracts, and feedstock flexibility, in addition to producers and end-users both being providers of essential services.

Suggested Citation

  • Bruno Gagnon & Heather MacDonald & Emily Hope & Margaret Jean Blair & Daniel W. McKenney, 2022. "Impact of the COVID-19 Pandemic on Biomass Supply Chains: The Case of the Canadian Wood Pellet Industry," Energies, MDPI, vol. 15(9), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3179-:d:803092
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3179/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3179/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mobini, Mahdi & Sowlati, Taraneh & Sokhansanj, Shahab, 2013. "A simulation model for the design and analysis of wood pellet supply chains," Applied Energy, Elsevier, vol. 111(C), pages 1239-1249.
    2. Schipfer, Fabian & Kranzl, Lukas & Olsson, Olle & Lamers, Patrick, 2020. "The European wood pellets for heating market - Price developments, trade and market efficiency," Energy, Elsevier, vol. 212(C).
    3. Maureen S. Golan & Laura H. Jernegan & Igor Linkov, 2020. "Trends and applications of resilience analytics in supply chain modeling: systematic literature review in the context of the COVID-19 pandemic," Environment Systems and Decisions, Springer, vol. 40(2), pages 222-243, June.
    4. Xintong Li & Fatemeh Mokhtarzadeh & G. Cornelis van Kooten, 2021. "A Gravity Model of Softwood Lumber Trade: An Application to the Canada-U.S. Trade Dispute," Journal of Forest Economics, now publishers, vol. 36(4), pages 351-381, October.
    5. Boukherroub, Tasseda & LeBel, Luc & Lemieux, Sébastien, 2017. "An integrated wood pellet supply chain development: Selecting among feedstock sources and a range of operating scales," Applied Energy, Elsevier, vol. 198(C), pages 385-400.
    6. Mathieu Béland & Evelyne Thiffault & Julie Barrette & Warren Mabee, 2020. "Degraded Trees from Spruce Budworm Epidemics as Bioenergy Feedstock: A Profitability Analysis of Forest Operations," Energies, MDPI, vol. 13(18), pages 1-19, September.
    7. Biljana Kulisic & Bruno Gagnon & Jörg Schweinle & Sam Van Holsbeeck & Mark Brown & Jurica Simurina & Ioannis Dimitriou & Heather McDonald, 2021. "The Contributions of Biomass Supply for Bioenergy in the Post-COVID-19 Recovery," Energies, MDPI, vol. 14(24), pages 1-31, December.
    8. M. Jean Blair & Bruno Gagnon & Andrew Klain & Biljana Kulišić, 2021. "Contribution of Biomass Supply Chains for Bioenergy to Sustainable Development Goals," Land, MDPI, vol. 10(2), pages 1-28, February.
    9. Ståle Størdal & Gudbrand Lien & Erik Trømborg, 2021. "Impacts of Infectious Disease Outbreaks on Firm Performance and Risk: The Forest Industries during the COVID-19 Pandemic," JRFM, MDPI, vol. 14(7), pages 1-13, July.
    10. Visser, L. & Hoefnagels, R. & Junginger, M., 2020. "Wood pellet supply chain costs – A review and cost optimization analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Santos Júnior, Edvaldo Pereira & Silva, Magno Vamberto Batista da & Simioni, Flávio José & Rotella Junior, Paulo & Menezes, Rômulo Simões Cezar & Coelho Junior, Luiz Moreira, 2022. "Location and concentration of the forest bioelectricity supply in Brazil: A space-time analysis," Renewable Energy, Elsevier, vol. 199(C), pages 710-719.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmood Ebadian & Shahab Sokhansanj & David Lee & Alyssa Klein & Lawrence Townley-Smith, 2021. "Evaluating the Economic Viability of Agricultural Pellets to Supplement the Current Global Wood Pellets Supply for Bioenergy Production," Energies, MDPI, vol. 14(8), pages 1-19, April.
    2. Zaher Abusaq & Muhammad Salman Habib & Adeel Shehzad & Mohammad Kanan & Ramiz Assaf, 2022. "A Flexible Robust Possibilistic Programming Approach toward Wood Pellets Supply Chain Network Design," Mathematics, MDPI, vol. 10(19), pages 1-27, October.
    3. Vitale, Ignacio & Dondo, Rodolfo G. & González, Matías & Cóccola, Mariana E., 2022. "Modelling and optimization of material flows in the wood pellet supply chain," Applied Energy, Elsevier, vol. 313(C).
    4. Andrzej Bochniak & Monika Stoma, 2021. "Estimating the Optimal Location for the Storage of Pellet Surplus," Energies, MDPI, vol. 14(20), pages 1-16, October.
    5. Nicolas Mansuy & Julie Barrette & Jérôme Laganière & Warren Mabee & David Paré & Shuva Gautam & Evelyne Thiffault & Saeed Ghafghazi, 2018. "Salvage harvesting for bioenergy in Canada: From sustainable and integrated supply chain to climate change mitigation," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(5), September.
    6. Maaz Hassan & Naveed Usman & Majid Hussain & Adnan Yousaf & Muhammad Aamad Khattak & Sidra Yousaf & Rankeshwarnath Sanjay Mishr & Sana Ahmad & Fariha Rehman & Ahmad Rashedi, 2023. "Environmental and Socio-Economic Assessment of Biomass Pellets Biofuel in Hazara Division, Pakistan," Sustainability, MDPI, vol. 15(15), pages 1-23, August.
    7. Lenka Štofová & Petra Szaryszová & Bohuslava Mihalčová, 2021. "Testing the Bioeconomic Options of Transitioning to Solid Recovered Fuel: A Case Study of a Thermal Power Plant in Slovakia," Energies, MDPI, vol. 14(6), pages 1-20, March.
    8. Bernardine Chigozie Chidozie & Ana Luísa Ramos & José Vasconcelos Ferreira & Luís Pinto Ferreira, 2023. "Residual Agroforestry Biomass Supply Chain Simulation Insights and Directions: A Systematic Literature Review," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
    9. Visser, L. & Hoefnagels, R. & Junginger, M., 2020. "Wood pellet supply chain costs – A review and cost optimization analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    10. Salehi-Amiri, Amirhossein & Zahedi, Ali & Akbapour, Navid & Hajiaghaei-Keshteli, Mostafa, 2021. "Designing a sustainable closed-loop supply chain network for walnut industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    11. Maria Ghufran & Khurram Iqbal Ahmad Khan & Fahim Ullah & Wesam Salah Alaloul & Muhammad Ali Musarat, 2022. "Key Enablers of Resilient and Sustainable Construction Supply Chains: A Systems Thinking Approach," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    12. Workson Siwale & Stefan Frodeson & Michael Finell & Mehrdad Arshadi & Carina Jonsson & Gunnar Henriksson & Jonas Berghel, 2022. "Understanding Off-Gassing of Biofuel Wood Pellets Using Pellets Produced from Pure Microcrystalline Cellulose with Different Additive Oils," Energies, MDPI, vol. 15(6), pages 1-12, March.
    13. Eriksson, Anders & Eliasson, Lars & Sikanen, Lauri & Hansson, Per-Anders & Jirjis, Raida, 2017. "Evaluation of delivery strategies for forest fuels applying a model for Weather-driven Analysis of Forest Fuel Systems (WAFFS)," Applied Energy, Elsevier, vol. 188(C), pages 420-430.
    14. Clavijo-Buritica, Nicolás & Triana-Sanchez, Laura & Escobar, John Willmer, 2023. "A hybrid modeling approach for resilient agri-supply network design in emerging countries: Colombian coffee supply chain," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    15. Carla Silva & Patricia Moniz & Ana Cristina Oliveira & Samuela Vercelli & Alberto Reis & Teresa Lopes da Silva, 2022. "Cascading Crypthecodinium cohnii Biorefinery: Global Warming Potential and Techno-Economic Assessment," Energies, MDPI, vol. 15(10), pages 1-26, May.
    16. Shafiee, Mohammad & Zare-Mehrjerdi, Yahia & Govindan, Kannan & Dastgoshade, Sohaib, 2022. "A causality analysis of risks to perishable product supply chain networks during the COVID-19 outbreak era: An extended DEMATEL method under Pythagorean fuzzy environment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    17. Piotr F. Borowski, 2022. "Management of Energy Enterprises in Zero-Emission Conditions: Bamboo as an Innovative Biomass for the Production of Green Energy by Power Plants," Energies, MDPI, vol. 15(5), pages 1-16, March.
    18. Vera, Ivan & Wicke, Birka & Lamers, Patrick & Cowie, Annette & Repo, Anna & Heukels, Bas & Zumpf, Colleen & Styles, David & Parish, Esther & Cherubini, Francesco & Berndes, Göran & Jager, Henriette & , 2022. "Land use for bioenergy: Synergies and trade-offs between sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    19. El-Awady Attia & Ali Alarjani & Md. Sharif Uddin & Ahmed Farouk Kineber, 2023. "Determining the Stationary Enablers of Resilient and Sustainable Supply Chains," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
    20. Carla L. Simões & Ricardo Simoes & Ana Sofia Gonçalves & Leonel J. R. Nunes, 2023. "Environmental Analysis of the Valorization of Woody Biomass Residues: A Comparative Study with Vine Pruning Leftovers in Portugal," Sustainability, MDPI, vol. 15(20), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3179-:d:803092. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.