IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i5p1928-d765489.html
   My bibliography  Save this article

Management of Energy Enterprises in Zero-Emission Conditions: Bamboo as an Innovative Biomass for the Production of Green Energy by Power Plants

Author

Listed:
  • Piotr F. Borowski

    (Institute of Mechanical Engineering, Warsaw University of Life Sciences, 02-787 Warsaw, Poland)

Abstract

Managing energy-producing companies as well as managing the entire energy sector in the light of legal and environmental requirements requires a new vision, mission, and strategy. The paper analyses the strategies of energy enterprises. It is not enough now to produce energy and deliver it at appropriate, acceptable prices to consumers; it must be generated with the least negative impact on the environment. To achieve that plan, companies should cut the carbon intensity of their products by 20% by 2030, 45% by 2035, and 100% by 2050, using a baseline of 2016. To compared to 1990 levels, the greenhouse gas emission reduction target for 2030 should be increased to 55%. Bioenergy will represent 18% of total final energy consumption in 2050. Additionally, this requires the development of a long-term strategy that can force companies to completely reorganize their production or start a new operation and activities. A low-cost strategy or a competition strategy are insufficient, and it is necessary to look for new strategies that combine adaptation to the requirements of the external environment with the use of innovative solutions. The article analyzes the possibilities of implementing an innovative strategy based on biomass, especially bamboo biomass. The reduction in CO 2 emissions of bamboo, taking into account life cycle emissions, can reach up to 85%. The novelty is to show the possibility of producing electricity by a large-scale power plant solely based on bamboo biomass on the example of a power plant located in the Tokushima prefecture, Japan. Another novelty is the fact that this article draws attention to the problem of burning bamboo in a power plant. The problem is that, as a result of burning bamboo, the clinker settles quite quickly. The study analyzes the selected ingredients for co-firing, which improve the combustion parameters of bamboo biomass (e.g., blended 20% bamboo with 80% pine or 30% bamboo with 70% tree bark). The importance of this research lies in the fact that it shows new innovative solutions in the energy sector that will help to achieve emission reductions. In addition, the article proposes to use eco-innovations and pay attention to eco-efficiency. Such solutions are an opportunity for ecological development through the use of bamboo as a fuel, which is classified as a renewable energy source by power plants.

Suggested Citation

  • Piotr F. Borowski, 2022. "Management of Energy Enterprises in Zero-Emission Conditions: Bamboo as an Innovative Biomass for the Production of Green Energy by Power Plants," Energies, MDPI, vol. 15(5), pages 1-16, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1928-:d:765489
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/5/1928/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/5/1928/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Piotr F. Borowski, 2021. "Innovation strategy on the example of companies using bamboo," Journal of Innovation and Entrepreneurship, Springer, vol. 10(1), pages 1-17, December.
    2. Liu, Zhijia & Mi, Bingbing & Jiang, Zehui & Fei, Benhua & Cai, Zhiyong & Liu, Xing'e, 2016. "Improved bulk density of bamboo pellets as biomass for energy production," Renewable Energy, Elsevier, vol. 86(C), pages 1-7.
    3. Piotr F. Borowski, 2021. "Digitization, Digital Twins, Blockchain, and Industry 4.0 as Elements of Management Process in Enterprises in the Energy Sector," Energies, MDPI, vol. 14(7), pages 1-20, March.
    4. Michał Baran & Aneta Kuźniarska & Zbigniew J. Makieła & Anna Sławik & Magdalena M. Stuss, 2022. "Does ESG Reporting Relate to Corporate Financial Performance in the Context of the Energy Sector Transformation? Evidence from Poland," Energies, MDPI, vol. 15(2), pages 1-22, January.
    5. Dorota Burchart-Korol & Magdalena Gazda-Grzywacz & Katarzyna Zarębska, 2020. "Research and Prospects for the Development of Alternative Fuels in the Transport Sector in Poland: A Review," Energies, MDPI, vol. 13(11), pages 1-16, June.
    6. Brauers, Hanna & Oei, Pao-Yu, 2020. "The political economy of coal in Poland: Drivers and barriers for a shift away from fossil fuels," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 144.
    7. Roshan Sharma & Jaya Wahono & Himlal Baral, 2018. "Bamboo as an Alternative Bioenergy Crop and Powerful Ally for Land Restoration in Indonesia," Sustainability, MDPI, vol. 10(12), pages 1-10, November.
    8. Malec, Marcin, 2022. "The prospects for decarbonisation in the context of reported resources and energy policy goals: The case of Poland," Energy Policy, Elsevier, vol. 161(C).
    9. Brauers, Hanna & Oei, Pao-Yu, 2020. "The political economy of coal in Poland: Drivers and barriers for a shift away from fossil fuels," Energy Policy, Elsevier, vol. 144(C).
    10. Visser, L. & Hoefnagels, R. & Junginger, M., 2020. "Wood pellet supply chain costs – A review and cost optimization analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iwona Posadzińska & Małgorzata Grzeszczak, 2022. "Management Accounting System in the Management of an Intelligent Energy Sector Enterprise," Energies, MDPI, vol. 15(20), pages 1-17, October.
    2. Yongming Zhu & Xiaoyu Zhou & Junjie Li & Fan Wang, 2022. "Technological Innovation, Fiscal Decentralization, Green Development Efficiency: Based on Spatial Effect and Moderating Effect," Sustainability, MDPI, vol. 14(7), pages 1-16, April.
    3. Marcin Zieliński & Marcin Dębowski & Joanna Kazimierowicz & Izabela Świca, 2023. "Microalgal Carbon Dioxide (CO 2 ) Capture and Utilization from the European Union Perspective," Energies, MDPI, vol. 16(3), pages 1-27, February.
    4. Shogo Eguchi, 2022. "CO 2 Reduction Potential from Efficiency Improvements in China’s Coal-Fired Thermal Power Generation: A Combined Approach of Metafrontier DEA and LMDI," Energies, MDPI, vol. 15(7), pages 1-19, March.
    5. Piotr F. Borowski, 2022. "Mitigating Climate Change and the Development of Green Energy versus a Return to Fossil Fuels Due to the Energy Crisis in 2022," Energies, MDPI, vol. 15(24), pages 1-16, December.
    6. Shanshan Li & Yujie Wang & Yuannan Zheng & Jichao Geng & Junqi Zhu, 2022. "Research on Energy Saving and Environmental Protection Management Evaluation of Listed Companies in Energy Industry Based on Portfolio Weight Cloud Model," Energies, MDPI, vol. 15(12), pages 1-18, June.
    7. Jiajie Li & Chenyu Wang & Xiaoqian Song & Xin Jin & Shaowei Zhao & Zihan Qi & Hui Zeng & Sitao Zhu & Fuxing Jiang & Wen Ni & Michael Hitch, 2022. "Market Stakeholder Analysis of the Practical Implementation of Carbonation Curing on Steel Slag for Urban Sustainable Governance," Energies, MDPI, vol. 15(7), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jarosław Kaczmarek, 2022. "The Balance of Outlays and Effects of Restructuring Hard Coal Mining Companies in Terms of Energy Policy of Poland PEP 2040," Energies, MDPI, vol. 15(5), pages 1-30, March.
    2. Wilhelm Jan Tic & Joanna Guziałowska-Tic, 2023. "A System of Improving Energy and Ecological Efficiency, Using the Example of Fuel Oil Combustion in Power Plant Boilers," Energies, MDPI, vol. 16(3), pages 1-15, January.
    3. Marcin Połom, 2021. "Technology Development and Spatial Diffusion of Auxiliary Power Sources in Trolleybuses in European Countries," Energies, MDPI, vol. 14(11), pages 1-18, May.
    4. Long Xue & Qianyu Zhang & Xuemang Zhang & Chengyu Li, 2022. "Can Digital Transformation Promote Green Technology Innovation?," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    5. Aurelia Rybak & Aleksandra Rybak, 2021. "Methods of Ensuring Energy Security with the Use of Hard Coal—The Case of Poland," Energies, MDPI, vol. 14(18), pages 1-25, September.
    6. T. B. White & S. O. Petrovan & L. A. Bennun & T. Butterworth & A. P. Christie & H. Downey & S. B. Hunter & B. R. Jobson & S. O. S. E. zu Ermgassen & W. J. Sutherland, 2023. "Principles for using evidence to improve biodiversity impact mitigation by business," Business Strategy and the Environment, Wiley Blackwell, vol. 32(7), pages 4719-4733, November.
    7. Hedan Ma & Xinliang Jia & Xin Wang, 2022. "Digital Transformation, Ambidextrous Innovation and Enterprise Value: Empirical Analysis Based on Listed Chinese Manufacturing Companies," Sustainability, MDPI, vol. 14(15), pages 1-20, August.
    8. Kateryna Redko & Olena Borychenko & Anatolii Cherniavskyi & Volodymyr Saienko & Serhii Dudnikov, 2023. "Comparative Analysis of Innovative Development Strategies of Fuel and Energy Complex of Ukraine and the EU Countries: International Experience," International Journal of Energy Economics and Policy, Econjournals, vol. 13(2), pages 301-308, March.
    9. Jingna Kou & Wei Li & Rui Zhang & Dingxiong Shi, 2023. "Hydrogen as a Transition Tool in a Fossil Fuel Resource Region: Taking China’s Coal Capital Shanxi as an Example," Sustainability, MDPI, vol. 15(15), pages 1-19, August.
    10. Duarte, Rosa & Serrano, Ana, 2021. "Environmental analysis of structural and technological change in a context of trade expansion: Lessons from the EU enlargement," Energy Policy, Elsevier, vol. 150(C).
    11. Nachatter Singh Garha, 2022. "From Decarbonization to Depopulation: An Emerging Challenge for the Carbon-Intensive Regions under the Energy Transition in Spain," Sustainability, MDPI, vol. 14(22), pages 1-22, November.
    12. Mariusz Pyra, 2023. "Simulation of the Progress of the Decarbonization Process in Poland’s Road Transport Sector," Energies, MDPI, vol. 16(12), pages 1-21, June.
    13. Patrycjusz Zarębski & Dominik Katarzyński, 2023. "A Theoretical Framework for a Local Energy Innovation System Based on the Renewable Energy Case of Poland," Energies, MDPI, vol. 16(9), pages 1-24, April.
    14. Sylwia Mrozowska & Jan A. Wendt & Krzysztof Tomaszewski, 2021. "The Challenges of Poland’s Energy Transition," Energies, MDPI, vol. 14(23), pages 1-22, December.
    15. Wadim Strielkowski & Lubomír Civín & Elena Tarkhanova & Manuela Tvaronavičienė & Yelena Petrenko, 2021. "Renewable Energy in the Sustainable Development of Electrical Power Sector: A Review," Energies, MDPI, vol. 14(24), pages 1-24, December.
    16. Furmankiewicz, Marek & Hewitt, Richard J. & Kazak, Jan K., 2021. "Can rural stakeholders drive the low-carbon transition? Analysis of climate-related activities planned in local development strategies in Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    17. Oskar Juszczyk & Juliusz Juszczyk & Sławomir Juszczyk & Josu Takala, 2022. "Barriers for Renewable Energy Technologies Diffusion: Empirical Evidence from Finland and Poland," Energies, MDPI, vol. 15(2), pages 1-14, January.
    18. Sandro Sacchelli & Valerii Havrysh & Antonina Kalinichenko & Dariusz Suszanowicz, 2022. "Ground-Mounted Photovoltaic and Crop Cultivation: A Comparative Analysis," Sustainability, MDPI, vol. 14(14), pages 1-20, July.
    19. Ewa Chomać-Pierzecka, 2023. "Pharmaceutical Companies in the Light of the Idea of Sustainable Development—An Analysis of Selected Aspects of Sustainable Management," Sustainability, MDPI, vol. 15(11), pages 1-23, May.
    20. Ewa Chomać-Pierzecka & Hubert Gąsiński & Joanna Rogozińska-Mitrut & Dariusz Soboń & Sebastian Zupok, 2023. "Review of Selected Aspects of Wind Energy Market Development in Poland and Lithuania in the Face of Current Challenges," Energies, MDPI, vol. 16(1), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1928-:d:765489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.