IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2660-d787370.html
   My bibliography  Save this article

Does the Development of Digital Finance Contribute to Haze Pollution Control? Evidence from China

Author

Listed:
  • Ke-Liang Wang

    (School of Economics, Ocean University of China, Qingdao 266011, China)

  • Rui-Rui Zhu

    (School of Economics, Ocean University of China, Qingdao 266011, China)

  • Yun-He Cheng

    (School of Economics and Management, Anhui University of Science and Technology, Huainan 232011, China)

Abstract

Mitigating haze pollution is of practical significance to the green economy, and the development of digital finance may help achieve this goal. However, the effect of digital finance on haze pollution has not been systematically explained. Based on Chinese prefectural panel data for the 2011–2016 period, this study on haze concentration, technological innovation, and digital inclusive finance index as the dependent variable, mediating variable, and the core independent variable, respectively, investigated whether digital finance has improved haze pollution control in China using fixed effect (FE) and random effect (RE) models, a mediating effect model, a threshold panel model, and a dynamic spatial Durbin model (SDM). Four key results were obtained. (1) Digital finance significantly decreased haze pollution. After accounting for potential endogeneity, this conclusion was still valid. (2) The analysis of the influencing mechanism showed that digital finance was conducive to haze reduction by promoting regional innovation capabilities. (3) There was a nonlinear relationship between the influence of digital finance and haze pollution. Specifically, the impact of digital finance on haze pollution has gradually increased with the improvement of regional innovation capabilities. (4) Haze pollution displayed a significant positive spatial agglomeration in China. Digital finance can alleviate local haze pollution but will aggravate haze pollution in adjacent areas. Based on the results of this study, some pertinent policy suggestions were proposed.

Suggested Citation

  • Ke-Liang Wang & Rui-Rui Zhu & Yun-He Cheng, 2022. "Does the Development of Digital Finance Contribute to Haze Pollution Control? Evidence from China," Energies, MDPI, vol. 15(7), pages 1-21, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2660-:d:787370
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2660/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2660/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Qian & Zhong, Shihu & Shi, Tao & Zhang, Xiaoling, 2021. "Environmental regulation and haze pollution: Neighbor-companion or neighbor-beggar?," Energy Policy, Elsevier, vol. 151(C).
    2. Zeng, Jingjing & Liu, Ting & Feiock, Richard & Li, Fei, 2019. "The impacts of China's provincial energy policies on major air pollutants: A spatial econometric analysis," Energy Policy, Elsevier, vol. 132(C), pages 392-403.
    3. Marcos Geraldo Gomes & Victor Hugo Carlquist da Silva & Luiz Fernando Rodrigues Pinto & Plinio Centoamore & Salvatore Digiesi & Francesco Facchini & Geraldo Cardoso de Oliveira Neto, 2020. "Economic, Environmental and Social Gains of the Implementation of Artificial Intelligence at Dam Operations toward Industry 4.0 Principles," Sustainability, MDPI, vol. 12(9), pages 1-19, April.
    4. Zhang, Fan & Deng, Xiangzheng & Phillips, Fred & Fang, Chuanglin & Wang, Chao, 2020. "Impacts of industrial structure and technical progress on carbon emission intensity: Evidence from 281 cities in China," Technological Forecasting and Social Change, Elsevier, vol. 154(C).
    5. Franklin Allen & James McAndrews & Philip Strahan, 2002. "E-Finance: An Introduction," Journal of Financial Services Research, Springer;Western Finance Association, vol. 22(1), pages 5-27, August.
    6. Cecere, Grazia & Corrocher, Nicoletta & Gossart, Cédric & Ozman, Muge, 2014. "Technological pervasiveness and variety of innovators in Green ICT: A patent-based analysis," Research Policy, Elsevier, vol. 43(10), pages 1827-1839.
    7. Jiang, Lei & Folmer, Henk & Ji, Minhe & Zhou, P., 2018. "Revisiting cross-province energy intensity convergence in China: A spatial panel analysis," Energy Policy, Elsevier, vol. 121(C), pages 252-263.
    8. Zheming Yan & Rui Shi & Zhiming Yang, 2018. "ICT Development and Sustainable Energy Consumption: A Perspective of Energy Productivity," Sustainability, MDPI, vol. 10(7), pages 1-15, July.
    9. Cheng, Shulei & Fan, Wei & Chen, Jiandong & Meng, Fanxin & Liu, Gengyuan & Song, Malin & Yang, Zhifeng, 2020. "The impact of fiscal decentralization on CO2 emissions in China," Energy, Elsevier, vol. 192(C).
    10. Salahuddin, Mohammad & Alam, Khorshed & Ozturk, Ilhan, 2016. "The effects of Internet usage and economic growth on CO2 emissions in OECD countries: A panel investigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1226-1235.
    11. Kallal, Rahim & Haddaji, Abir & Ftiti, Zied, 2021. "ICT diffusion and economic growth: Evidence from the sectorial analysis of a periphery country," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    12. Shahbaz, Muhammad & Nasreen, Samia & Abbas, Faisal & Anis, Omri, 2015. "Does foreign direct investment impede environmental quality in high-, middle-, and low-income countries?," Energy Economics, Elsevier, vol. 51(C), pages 275-287.
    13. Maria T. Costa-Campi, Jordi Paniagua, and Elisa Trujillo, 2018. "Is energy market integration a green light for FDI?," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    14. Chien, Mei-Se & Cheng, Chih-Yang & Kurniawati, Meta Ayu, 2020. "The non-linear relationship between ICT diffusion and financial development," Telecommunications Policy, Elsevier, vol. 44(9).
    15. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei, 2018. "How does information and communication technology affect China's energy intensity? A three-tier structural decomposition analysis," Energy, Elsevier, vol. 151(C), pages 748-759.
    16. Jie Zhou & Hanlin Lan & Cheng Zhao & Jianping Zhou, 2021. "Haze Pollution Levels, Spatial Spillover Influence, and Impacts of the Digital Economy: Empirical Evidence from China," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    17. Sadorsky, Perry, 2012. "Information communication technology and electricity consumption in emerging economies," Energy Policy, Elsevier, vol. 48(C), pages 130-136.
    18. Pradhan, Rudra P. & Arvin, Mak B. & Bahmani, Sahar & Bennett, Sara E., 2017. "The innovation- growth link in OECD countries: Could other macroeconomic variables matter?," Technology in Society, Elsevier, vol. 51(C), pages 113-123.
    19. Haldar, Anasuya & Sethi, Narayan, 2022. "Environmental effects of Information and Communication Technology - Exploring the roles of renewable energy, innovation, trade and financial development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    20. Hwang, Won-Sik & Shin, Jungwoo, 2017. "ICT-specific technological change and economic growth in Korea," Telecommunications Policy, Elsevier, vol. 41(4), pages 282-294.
    21. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei & Su, Bin, 2019. "How information and communication technology drives carbon emissions: A sector-level analysis for China," Energy Economics, Elsevier, vol. 81(C), pages 380-392.
    22. Kais Saidi & Hassen Toumi & Saida Zaidi, 2017. "Impact of Information Communication Technology and Economic Growth on the Electricity Consumption: Empirical Evidence from 67 Countries," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 8(3), pages 789-803, September.
    23. Li, Jie & Wu, Yu & Xiao, Jing Jian, 2020. "The impact of digital finance on household consumption: Evidence from China," Economic Modelling, Elsevier, vol. 86(C), pages 317-326.
    24. Wu, Haitao & Hao, Yu & Ren, Siyu & Yang, Xiaodong & Xie, Guo, 2021. "Does internet development improve green total factor energy efficiency? Evidence from China," Energy Policy, Elsevier, vol. 153(C).
    25. Lange, Steffen & Pohl, Johanna & Santarius, Tilman, 2020. "Digitalization and energy consumption. Does ICT reduce energy demand?," Ecological Economics, Elsevier, vol. 176(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Razzaq, Asif & Sharif, Arshian & Ozturk, Ilhan & Skare, Marinko, 2023. "Asymmetric influence of digital finance, and renewable energy technology innovation on green growth in China," Renewable Energy, Elsevier, vol. 202(C), pages 310-319.
    2. Yang Liu & Ruochan Xiong & Shigong Lv & Da Gao, 2022. "The Impact of Digital Finance on Green Total Factor Energy Efficiency: Evidence at China’s City Level," Energies, MDPI, vol. 15(15), pages 1-17, July.
    3. Razzaq, Asif & Yang, Xiaodong, 2023. "Digital finance and green growth in China: Appraising inclusive digital finance using web crawler technology and big data," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    4. Huaxue Zhao & Yu Cheng & Ruijing Zheng, 2022. "Impact of the Digital Economy on PM 2.5 : Experience from the Middle and Lower Reaches of the Yellow River Basin," IJERPH, MDPI, vol. 19(24), pages 1-20, December.
    5. Ying Yu & Qian Zhang & Fan Song, 2023. "Non-Linear Impacts and Spatial Spillover of Digital Finance on Green Total Factor Productivity: An Empirical Study of Smart Cities in China," Sustainability, MDPI, vol. 15(12), pages 1-22, June.
    6. Liuhua Fang & Bin Zhao & Wenyu Li & Lixia Tao & Luyao He & Jianyu Zhang & Chuanhao Wen, 2023. "Impact of Digital Finance on Industrial Green Transformation: Evidence from the Yangtze River Economic Belt," Sustainability, MDPI, vol. 15(17), pages 1-23, August.
    7. Guanghao Li & Xiaoliang Zhou & Zhe Bao, 2022. "A Win–Win Opportunity: The Industrial Pollution Reduction Effect of Digital Economy Development—A Quasi-Natural Experiment Based on the “Broadband China” Strategy," Sustainability, MDPI, vol. 14(9), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Lei & Chen, Yangyang & Ramsey, Thomas Stephen & Hewings, Geoffrey J.D., 2021. "Will researching digital technology really empower green development?," Technology in Society, Elsevier, vol. 66(C).
    2. Lin, Boqiang & Huang, Chenchen, 2023. "How will promoting the digital economy affect electricity intensity?," Energy Policy, Elsevier, vol. 173(C).
    3. Zhang, Zhouyi & Song, Yi & Cheng, Jinhua & Zhang, Yijun, 2023. "Effects of heterogeneous ICT on critical metal supply: A differentiated perspective on primary and secondary supply," Resources Policy, Elsevier, vol. 83(C).
    4. Lee, Chien-Chiang & Yuan, Zihao & Wang, Qiaoru, 2022. "How does information and communication technology affect energy security? International evidence," Energy Economics, Elsevier, vol. 109(C).
    5. Tang, Chang & Xue, Yan & Wu, Haitao & Irfan, Muhammad & Hao, Yu, 2022. "How does telecommunications infrastructure affect eco-efficiency? Evidence from a quasi-natural experiment in China," Technology in Society, Elsevier, vol. 69(C).
    6. Lee, Chien-Chiang & He, Zhi-Wen & Xiao, Fu, 2022. "How does information and communication technology affect renewable energy technology innovation? International evidence," Renewable Energy, Elsevier, vol. 200(C), pages 546-557.
    7. Wang, Jen Chun, 2022. "Understanding the energy consumption of information and communications equipment: A case study of schools in Taiwan," Energy, Elsevier, vol. 249(C).
    8. Xu, Qiong & Zhong, Meirui & Li, Xin, 2022. "How does digitalization affect energy? International evidence," Energy Economics, Elsevier, vol. 107(C).
    9. Magazzino, Cosimo & Mele, Marco & Morelli, Giovanna & Schneider, Nicolas, 2021. "The nexus between information technology and environmental pollution: Application of a new machine learning algorithm to OECD countries," Utilities Policy, Elsevier, vol. 72(C).
    10. Wu, Haitao & Xue, Yan & Hao, Yu & Ren, Siyu, 2021. "How does internet development affect energy-saving and emission reduction? Evidence from China," Energy Economics, Elsevier, vol. 103(C).
    11. Gao, Da & Li, Ge & Yu, Jiyu, 2022. "Does digitization improve green total factor energy efficiency? Evidence from Chinese 213 cities," Energy, Elsevier, vol. 247(C).
    12. Zhang, Wei & You, Jianmin & Lin, Weiwen, 2021. "Internet plus and China industrial system's low-carbon development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    13. Zhong, Mei-Rui & Cao, Meng-Yuan & Zou, Han, 2022. "The carbon reduction effect of ICT: A perspective of factor substitution," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    14. Kunkel, S. & Neuhäusler, P. & Matthess, M. & Dachrodt, M.F., 2023. "Industry 4.0 and energy in manufacturing sectors in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    15. Junhong Qu & Xiaoli Hao, 2022. "Digital Economy, Financial Development, and Energy Poverty Based on Mediating Effects and a Spatial Autocorrelation Model," Sustainability, MDPI, vol. 14(15), pages 1-24, July.
    16. Charfeddine, Lanouar & Umlai, Mohamed, 2023. "ICT sector, digitization and environmental sustainability: A systematic review of the literature from 2000 to 2022," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    17. Nuri Rosmika & Raja Masbar & Sofyan Syahnur & Suriani Suriani, 2022. "The Impact of the Information and Communication Technology and Electricity on Inter-island Interactions in Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 12(4), pages 568-574, July.
    18. Usman, Ahmed & Ozturk, Ilhan & Ullah, Sana & Hassan, Ali, 2021. "Does ICT have symmetric or asymmetric effects on CO2 emissions? Evidence from selected Asian economies," Technology in Society, Elsevier, vol. 67(C).
    19. Zheming Yan & Rui Shi & Zhiming Yang, 2018. "ICT Development and Sustainable Energy Consumption: A Perspective of Energy Productivity," Sustainability, MDPI, vol. 10(7), pages 1-15, July.
    20. Marta Gangolells & Miquel Casals & Marcel Macarulla & Núria Forcada, 2021. "Exploring the Potential of a Gamified Approach to Reduce Energy Use and Carbon Emissions in the Household Sector," Sustainability, MDPI, vol. 13(6), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2660-:d:787370. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.