IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i6p2034-d768462.html
   My bibliography  Save this article

Multifaceted Analysis of the Use of Catalytic Additives for Combustion with Hemp Pellets in a Low-Power Boiler

Author

Listed:
  • Bernard Knutel

    (Institute of Agricultural Engineering, Wroclaw University of Environmental and Life Sciences, 37 Chełmońskiego Str., 51-630 Wroclaw, Poland)

  • Błażej Gaze

    (Institute of Agricultural Engineering, Wroclaw University of Environmental and Life Sciences, 37 Chełmońskiego Str., 51-630 Wroclaw, Poland)

  • Paulina Wojtko

    (Institute of Agricultural Engineering, Wroclaw University of Environmental and Life Sciences, 37 Chełmońskiego Str., 51-630 Wroclaw, Poland)

  • Marcin Dębowski

    (Institute of Agricultural Engineering, Wroclaw University of Environmental and Life Sciences, 37 Chełmońskiego Str., 51-630 Wroclaw, Poland)

  • Przemysław Bukowski

    (Institute of Agricultural Engineering, Wroclaw University of Environmental and Life Sciences, 37 Chełmońskiego Str., 51-630 Wroclaw, Poland)

Abstract

This paper presents the results of a multifaceted analysis of the application of catalytic additives to hemp pellets’ combustion in a low-power boiler. The research concerns the effects of five catalytic additives applied inside the boiler’s combustion chamber—based on TiO 2 , MnO 2 , Cu(NO 3 ) 2 × 3H 2 O, H 2 PtCl 6 solution, and 99.5% pure urea solution—on the quality of hemp pellets’ combustion process. For this purpose, technical and elemental analyses of the used fuel were performed. The chemical composition of exhaust gases (NO x , CO, SO 2 , and PM content) was also examined using an exhaust gas analyzer and a dust meter. The highest reductions in emissions of individual pollutants were for CO (−113%; combustion with Ad3), NO x (−66%; combustion with Ad 4), SO 2 (−48%; combustion with Ad3), and PM (−78%; combustion with Ad1). The study also determined the amount of avoided costs due to the use of catalytic additives, as well as the annual prevented CO 2 emissions to the atmosphere. Due to rising fuel and energy prices, this study could be helpful for biomass boiler owners who would like to burn locally available raw materials and increase the combustion process’ efficiency.

Suggested Citation

  • Bernard Knutel & Błażej Gaze & Paulina Wojtko & Marcin Dębowski & Przemysław Bukowski, 2022. "Multifaceted Analysis of the Use of Catalytic Additives for Combustion with Hemp Pellets in a Low-Power Boiler," Energies, MDPI, vol. 15(6), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2034-:d:768462
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/6/2034/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/6/2034/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gaafar Muhammed & Neyre Tekbiyik-Ersoy, 2020. "Development of Renewable Energy in China, USA, and Brazil: A Comparative Study on Renewable Energy Policies," Sustainability, MDPI, vol. 12(21), pages 1-29, November.
    2. Cergibozan, Raif, 2022. "Renewable energy sources as a solution for energy security risk: Empirical evidence from OECD countries," Renewable Energy, Elsevier, vol. 183(C), pages 617-626.
    3. Renata Marks-Bielska & Stanisław Bielski & Anastasija Novikova & Kęstutis Romaneckas, 2019. "Straw Stocks as a Source of Renewable Energy. A Case Study of a District in Poland," Sustainability, MDPI, vol. 11(17), pages 1-18, August.
    4. Miguel-Angel Perea-Moreno & Esther Samerón-Manzano & Alberto-Jesus Perea-Moreno, 2019. "Biomass as Renewable Energy: Worldwide Research Trends," Sustainability, MDPI, vol. 11(3), pages 1-19, February.
    5. Vakulchuk, Roman & Overland, Indra & Scholten, Daniel, 2020. "Renewable energy and geopolitics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    6. Roy, Sounak & Hegde, M.S. & Madras, Giridhar, 2009. "Catalysis for NOx abatement," Applied Energy, Elsevier, vol. 86(11), pages 2283-2297, November.
    7. Rahman, Mohammad Mafizur & Sultana, Nahid & Velayutham, Eswaran, 2022. "Renewable energy, energy intensity and carbon reduction: Experience of large emerging economies," Renewable Energy, Elsevier, vol. 184(C), pages 252-265.
    8. Sterner, Thomas & Turnheim, Bruno, 2009. "Innovation and diffusion of environmental technology: Industrial NOx abatement in Sweden under refunded emission payments," Ecological Economics, Elsevier, vol. 68(12), pages 2996-3006, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anita Konieczna & Kamila Mazur & Adam Koniuszy & Andrzej Gawlik & Igor Sikorski, 2022. "Thermal Energy and Exhaust Emissions of a Gasifier Stove Feeding Pine and Hemp Pellets," Energies, MDPI, vol. 15(24), pages 1-17, December.
    2. Edyta Wrzesińska-Jędrusiak & Michał Czarnecki & Paweł Kazimierski & Paulina Bandrów & Szymon Szufa, 2023. "The Circular Economy in the Management of Waste from Leather Processing," Energies, MDPI, vol. 16(1), pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiuqin Zhang & Xudong Shi & Yasir Khan & Majid Khan & Saba Naz & Taimoor Hassan & Chenchen Wu & Tahir Rahman, 2023. "The Impact of Energy Intensity, Energy Productivity and Natural Resource Rents on Carbon Emissions in Morocco," Sustainability, MDPI, vol. 15(8), pages 1-22, April.
    2. Destek, Mehmet Akif & Manga, Müge & Cengiz, Orhan & Destek, Gamze, 2022. "Investigating the potential of renewable energy in establishing global peace: Fresh evidence from top energy consumer countries," Renewable Energy, Elsevier, vol. 197(C), pages 170-177.
    3. Dzido, Aleksandra & Krawczyk, Piotr & Wołowicz, Marcin & Badyda, Krzysztof, 2022. "Comparison of advanced air liquefaction systems in Liquid Air Energy Storage applications," Renewable Energy, Elsevier, vol. 184(C), pages 727-739.
    4. Karasoy, Alper, 2022. "Is innovative technology a solution to Japan's long-run energy insecurity? Dynamic evidence from the linear and nonlinear methods," Technology in Society, Elsevier, vol. 70(C).
    5. Mohsen Jamali & Esmaeil Bakhshandeh & Mohammad Yaghoubi Khanghahi & Carmine Crecchio, 2021. "Metadata Analysis to Evaluate Environmental Impacts of Wheat Residues Burning on Soil Quality in Developing and Developed Countries," Sustainability, MDPI, vol. 13(11), pages 1-13, June.
    6. Miguel-Angel Perea-Moreno & Quetzalcoatl Hernandez-Escobedo & Fernando Rueda-Martinez & Alberto-Jesus Perea-Moreno, 2020. "Zapote Seed ( Pouteria mammosa L. ) Valorization for Thermal Energy Generation in Tropical Climates," Sustainability, MDPI, vol. 12(10), pages 1-21, May.
    7. Dey, Subhashish & Sreenivasulu, Anduri & Veerendra, G.T.N. & Rao, K. Venkateswara & Babu, P.S.S. Anjaneya, 2022. "Renewable energy present status and future potentials in India: An overview," Innovation and Green Development, Elsevier, vol. 1(1).
    8. Xiaofeng Xu & Xiangyu Chen & Yi Xu & Tao Wang & Yifan Zhang, 2022. "Improving the Innovative Performance of Renewable Energy Enterprises in China: Effects of Subsidy Policy and Intellectual Property Legislation," Sustainability, MDPI, vol. 14(13), pages 1-24, July.
    9. Johan Lilliestam & Anthony Patt & Germán Bersalli, 2022. "On the quality of emission reductions: observed effects of carbon pricing on investments, innovation, and operational shifts. A response to van den Bergh and Savin (2021)," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(3), pages 733-758, November.
    10. Wood, Peter John & Jotzo, Frank, 2011. "Price floors for emissions trading," Energy Policy, Elsevier, vol. 39(3), pages 1746-1753, March.
    11. Bonilla, Jorge & Coria, Jessica & Sterner, Thomas, 2012. "Synergies and Trade-offs between Climate and Local Air Pollution: Policies in Sweden," Working Papers in Economics 529, University of Gothenburg, Department of Economics.
    12. Gavin Bridge & Ludger Gailing, 2020. "New energy spaces: Towards a geographical political economy of energy transition," Environment and Planning A, , vol. 52(6), pages 1037-1050, September.
    13. Johan Brolund & Robert Lundmark, 2017. "Effect of Environmental Regulation Stringency on the Pulp and Paper Industry," Sustainability, MDPI, vol. 9(12), pages 1-16, December.
    14. Borozan, Dj, 2022. "Detecting a structure in the European energy transition policy instrument mix: What mix successfully drives the energy transition?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    15. Li, Shiyuan & Xu, Mingxin & Jia, Lufei & Tan, Li & Lu, Qinggang, 2016. "Influence of operating parameters on N2O emission in O2/CO2 combustion with high oxygen concentration in circulating fluidized bed," Applied Energy, Elsevier, vol. 173(C), pages 197-209.
    16. Monica Aureliana Petcu & Eduard Madalin Dinu & Irina Daniela Cismasu & Raluca Andreea Popescu-Predulescu, 2023. "The Analysis of the Impact of Energy and Environmental Policies of the European Union on the Economic Performance of Companies. Case Study in the Transport Sector," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 25(63), pages 362-362, April.
    17. Ádám Sleisz & Dániel Divényi & Beáta Polgári & Péter Sőrés & Dávid Raisz, 2022. "A Novel Cost Allocation Mechanism for Local Flexibility in the Power System with Partial Disintermediation," Energies, MDPI, vol. 15(22), pages 1-18, November.
    18. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    19. Ilyas Khurshid & Imran Afgan, 2021. "Investigation of Water Composition on Formation Damage and Related Energy Recovery from Geothermal Reservoirs: Geochemical and Geomechanics Insights," Energies, MDPI, vol. 14(21), pages 1-21, November.
    20. Cantono, Simona, 2012. "Unveiling diffusion dynamics: an autocatalytic percolation model of environmental innovation diffusion and the optimal dynamic path of adoption subsidies," Department of Economics and Statistics Cognetti de Martiis LEI & BRICK - Laboratory of Economics of Innovation "Franco Momigliano", Bureau of Research in Innovation, Complexity and Knowledge, Collegio 201222, University of Turin.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2034-:d:768462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.