IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8383-d967960.html
   My bibliography  Save this article

Analysis of the Implementation of Functional Hydrogen Assumptions in Poland and Germany

Author

Listed:
  • Tomasz Jałowiec

    (Institute of Logistics, Faculty of Management and Command, War Studies University, 00-910 Warsaw, Poland)

  • Dariusz Grala

    (Institute of Logistics, Faculty of Management and Command, War Studies University, 00-910 Warsaw, Poland)

  • Piotr Maśloch

    (Management Institute Management and Command Department, War Studies University, 00-910 Warsaw, Poland)

  • Henryk Wojtaszek

    (Institute of Logistics, Faculty of Management and Command, War Studies University, 00-910 Warsaw, Poland)

  • Grzegorz Maśloch

    (Department of Local Government Economy and Financing, Warsaw School of Economics, 02-554 Warszawa, Poland)

  • Agnieszka Wójcik-Czerniawska

    (Department of Local Government Economy and Financing, Warsaw School of Economics, 02-554 Warszawa, Poland)

Abstract

The use of hydrogen exists in various sectors in Poland and Germany. Hydrogen can be used in industry, transport, decarbonisation of the Polish steel industry and as one of the low-emission alternatives to the existing coal applications in this sector. Limiting climate change requires efforts on a global scale from all countries of the world. Significant economic benefits will be realized by stimulating the development of new technologies to deal with climate change. The scenarios show an increasing demand for industrial hydrogen in the future. The key is to replace gray hydrogen with green, and to convert industrial processes, which will create additional hydrogen demand. The condition for the development of a green hydrogen economy is access to adequate installed capacity in renewable energy. Germany will become the leading market in the era of energy transformation in the coming years. The implementation of the hydrogen assumptions in Poland is possible, to a greater extent, by the efforts of entrepreneurs.

Suggested Citation

  • Tomasz Jałowiec & Dariusz Grala & Piotr Maśloch & Henryk Wojtaszek & Grzegorz Maśloch & Agnieszka Wójcik-Czerniawska, 2022. "Analysis of the Implementation of Functional Hydrogen Assumptions in Poland and Germany," Energies, MDPI, vol. 15(22), pages 1-25, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8383-:d:967960
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8383/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8383/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joanna Wiśniewska & Joanna Markiewicz, 2021. "The Impact of Poland’s Energy Transition on the Strategies of Fossil Fuel Sector Companies—The Example of PKN Orlen Group," Energies, MDPI, vol. 14(22), pages 1-17, November.
    2. McKenna, R.C. & Bchini, Q. & Weinand, J.M. & Michaelis, J. & König, S. & Köppel, W. & Fichtner, W., 2018. "The future role of Power-to-Gas in the energy transition: Regional and local techno-economic analyses in Baden-Württemberg," Applied Energy, Elsevier, vol. 212(C), pages 386-400.
    3. Aleksandra Małachowska & Natalia Łukasik & Joanna Mioduska & Jacek Gębicki, 2022. "Hydrogen Storage in Geological Formations—The Potential of Salt Caverns," Energies, MDPI, vol. 15(14), pages 1-19, July.
    4. Lidia Gawlik & Eugeniusz Mokrzycki, 2021. "Analysis of the Polish Hydrogen Strategy in the Context of the EU’s Strategic Documents on Hydrogen," Energies, MDPI, vol. 14(19), pages 1-15, October.
    5. Tomasz Rokicki & Piotr Bórawski & Aneta Bełdycka-Bórawska & Agata Żak & Grzegorz Koszela, 2021. "Development of Electromobility in European Union Countries under COVID-19 Conditions," Energies, MDPI, vol. 15(1), pages 1-24, December.
    6. Markus Reuß & Paris Dimos & Aline Léon & Thomas Grube & Martin Robinius & Detlef Stolten, 2021. "Hydrogen Road Transport Analysis in the Energy System: A Case Study for Germany through 2050," Energies, MDPI, vol. 14(11), pages 1-17, May.
    7. Bartosz Ceran, 2020. "Multi-Criteria Comparative Analysis of Clean Hydrogen Production Scenarios," Energies, MDPI, vol. 13(16), pages 1-21, August.
    8. Guri Bang & Knut Einar Rosendahl & Christoph Böhringer, 2022. "Balancing cost and justice concerns in the energy transition: comparing coal phase-out policies in Germany and the UK," Climate Policy, Taylor & Francis Journals, vol. 22(8), pages 1000-1015, September.
    9. Bozena Gajdzik, 2022. "How Steel Mills Transform into Smart Mills: Digital Changes and Development Determinants in the Polish Steel Industry," European Research Studies Journal, European Research Studies Journal, vol. 0(1), pages 27-42.
    10. Stavroula Evangelopoulou & Alessia De Vita & Georgios Zazias & Pantelis Capros, 2019. "Energy System Modelling of Carbon-Neutral Hydrogen as an Enabler of Sectoral Integration within a Decarbonization Pathway," Energies, MDPI, vol. 12(13), pages 1-24, July.
    11. Stephen Hall & Timothy J Foxon & Ronan Bolton, 2017. "Investing in low-carbon transitions: energy finance as an adaptive market," Climate Policy, Taylor & Francis Journals, vol. 17(3), pages 280-298, April.
    12. Katarzyna Sobiech-Grabka & Anna Stankowska & Krzysztof Jerzak, 2022. "Determinants of Electric Cars Purchase Intention in Poland: Personal Attitudes v. Economic Arguments," Energies, MDPI, vol. 15(9), pages 1-26, April.
    13. Parra, David & Valverde, Luis & Pino, F. Javier & Patel, Martin K., 2019. "A review on the role, cost and value of hydrogen energy systems for deep decarbonisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 279-294.
    14. Hansen, Kenneth & Mathiesen, Brian Vad & Skov, Iva Ridjan, 2019. "Full energy system transition towards 100% renewable energy in Germany in 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 1-13.
    15. Radosław Wolniak & Sebastian Saniuk & Sandra Grabowska & Bożena Gajdzik, 2020. "Identification of Energy Efficiency Trends in the Context of the Development of Industry 4.0 Using the Polish Steel Sector as an Example," Energies, MDPI, vol. 13(11), pages 1-16, June.
    16. Greg Muttitt & Sivan Kartha, 2020. "Equity, climate justice and fossil fuel extraction: principles for a managed phase out," Climate Policy, Taylor & Francis Journals, vol. 20(8), pages 1024-1042, September.
    17. Wojciech Drożdż & Filip Elżanowski & Jakub Dowejko & Bartosz Brożyński, 2021. "Hydrogen Technology on the Polish Electromobility Market. Legal, Economic, and Social Aspects," Energies, MDPI, vol. 14(9), pages 1-26, April.
    18. Piotr Wróblewski & Wojciech Drożdż & Wojciech Lewicki & Jakub Dowejko, 2021. "Total Cost of Ownership and Its Potential Consequences for the Development of the Hydrogen Fuel Cell Powered Vehicle Market in Poland," Energies, MDPI, vol. 14(8), pages 1-25, April.
    19. Wioletta Lipka & Cezary Szwed, 2021. "Multi-Attribute Rating Method for Selecting a Clean Coal Energy Generation Technology," Energies, MDPI, vol. 14(21), pages 1-20, November.
    20. Radosław Kaplan & Michał Kopacz, 2020. "Economic Conditions for Developing Hydrogen Production Based on Coal Gasification with Carbon Capture and Storage in Poland," Energies, MDPI, vol. 13(19), pages 1-20, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bożena Gajdzik & Magdalena Jaciow & Radosław Wolniak & Robert Wolny & Wieslaw Wes Grebski, 2023. "Assessment of Energy and Heat Consumption Trends and Forecasting in the Small Consumer Sector in Poland Based on Historical Data," Resources, MDPI, vol. 12(9), pages 1-33, September.
    2. Diego Bairrão & João Soares & José Almeida & John F. Franco & Zita Vale, 2023. "Green Hydrogen and Energy Transition: Current State and Prospects in Portugal," Energies, MDPI, vol. 16(1), pages 1-23, January.
    3. Tomasz Neumann, 2023. "Efficient Use of Low-Emission Power Supply for Means of Transport," Energies, MDPI, vol. 16(8), pages 1-14, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander I. Balitskii & Vitaly V. Dmytryk & Lyubomir M. Ivaskevich & Olexiy A. Balitskii & Alyona V. Glushko & Lev B. Medovar & Karol F. Abramek & Ganna P. Stovpchenko & Jacek J. Eliasz & Marcin A. K, 2022. "Improvement of the Mechanical Characteristics, Hydrogen Crack Resistance and Durability of Turbine Rotor Steels Welded Joints," Energies, MDPI, vol. 15(16), pages 1-23, August.
    2. Mariusz Niekurzak, 2021. "The Potential of Using Renewable Energy Sources in Poland Taking into Account the Economic and Ecological Conditions," Energies, MDPI, vol. 14(22), pages 1-17, November.
    3. Jan L. Bednarczyk & Katarzyna Brzozowska-Rup & Sławomir Luściński, 2022. "Opportunities and Limitations of Hydrogen Energy in Poland against the Background of the European Union Energy Policy," Energies, MDPI, vol. 15(15), pages 1-23, July.
    4. Bożena Gajdzik & Radosław Wolniak & Wieslaw Wes Grebski, 2022. "An Econometric Model of the Operation of the Steel Industry in POLAND in the Context of Process Heat and Energy Consumption," Energies, MDPI, vol. 15(21), pages 1-26, October.
    5. Thimet, P.J. & Mavromatidis, G., 2023. "What-where-when: Investigating the role of storage for the German electricity system transition," Applied Energy, Elsevier, vol. 351(C).
    6. Bożena Gajdzik & Radosław Wolniak & Wieslaw Wes Grebski, 2023. "Electricity and Heat Demand in Steel Industry Technological Processes in Industry 4.0 Conditions," Energies, MDPI, vol. 16(2), pages 1-29, January.
    7. Zapata, Sebastian & Castaneda, Monica & Aristizabal, Andres J. & Dyner, Isaac, 2022. "Renewables for supporting supply adequacy in Colombia," Energy, Elsevier, vol. 239(PC).
    8. Li, Yanfei & Taghizadeh-Hesary, Farhad, 2022. "The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China," Energy Policy, Elsevier, vol. 160(C).
    9. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    10. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    11. Chi, Lixun & Su, Huai & Zio, Enrico & Zhang, Jinjun & Li, Xueyi & Zhang, Li & Fan, Lin & Zhou, Jing & Bai, Hua, 2020. "Integrated Deterministic and Probabilistic Safety Analysis of Integrated Energy Systems with bi-directional conversion," Energy, Elsevier, vol. 212(C).
    12. Lund, Henrik & Thellufsen, Jakob Zinck & Sorknæs, Peter & Mathiesen, Brian Vad & Chang, Miguel & Madsen, Poul Thøis & Kany, Mikkel Strunge & Skov, Iva Ridjan, 2022. "Smart energy Denmark. A consistent and detailed strategy for a fully decarbonized society," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    13. Wei Wang & Leonid Melnyk & Oleksandra Kubatko & Bohdan Kovalov & Luc Hens, 2023. "Economic and Technological Efficiency of Renewable Energy Technologies Implementation," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
    14. Stephan Kigle & Michael Ebner & Andrej Guminski, 2022. "Greenhouse Gas Abatement in EUROPE—A Scenario-Based, Bottom-Up Analysis Showing the Effect of Deep Emission Mitigation on the European Energy System," Energies, MDPI, vol. 15(4), pages 1-18, February.
    15. Yanguas Parra, Paola & Hauenstein, Christian & Oei, Pao-Yu, 2021. "The death valley of coal – Modelling COVID-19 recovery scenarios for steam coal markets," Applied Energy, Elsevier, vol. 288(C).
    16. D’Orazio, Paola & Valente, Marco, 2019. "The role of finance in environmental innovation diffusion: An evolutionary modeling approach," Journal of Economic Behavior & Organization, Elsevier, vol. 162(C), pages 417-439.
    17. Ahmad Alzahrani & Senthil Kumar Ramu & Gunapriya Devarajan & Indragandhi Vairavasundaram & Subramaniyaswamy Vairavasundaram, 2022. "A Review on Hydrogen-Based Hybrid Microgrid System: Topologies for Hydrogen Energy Storage, Integration, and Energy Management with Solar and Wind Energy," Energies, MDPI, vol. 15(21), pages 1-32, October.
    18. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    19. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).
    20. Tubagus Aryandi Gunawan & Alessandro Singlitico & Paul Blount & James Burchill & James G. Carton & Rory F. D. Monaghan, 2020. "At What Cost Can Renewable Hydrogen Offset Fossil Fuel Use in Ireland’s Gas Network?," Energies, MDPI, vol. 13(7), pages 1-23, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8383-:d:967960. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.