IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7235-d931591.html
   My bibliography  Save this article

The Role of Hydrogen in the Visegrad Group Approach to Energy Transition

Author

Listed:
  • Ewelina Kochanek

    (Faculty of Social Sciences, Institute of Politics and Security Sciences, University of Szczecin, 71-017 Szczecin, Poland)

Abstract

Hydrogen is an energy carrier in which hopes are placed for an easier achievement of climate neutrality. Together with electrification, energy efficiency development, and RES, hydrogen is expected to enable the ambitious energy goals of the European Green Deal. Hence, the aim of the article is to query the development of the hydrogen economy in the Visegrad Group countries (V4). The study considers six diagnostic features: sources of hydrogen production, hydrogen legislation, financial mechanisms, objectives included in the hydrogen strategy, environmental impact of H2, and costs of green hydrogen investments. The analysis also allowed to indicate the role that hydrogen will play in the energy transition process of the V4 countries. The analysis shows that the V4 countries have similar approaches to the development of the hydrogen market, but the hydrogen strategies published by each of the Visegrad countries are not the same. Each document sets goals based on the hydrogen production to date and the specifics of the domestic energy and transport sectors, as there are no solutions that are equally effective for all. Poland’s hydrogen strategy definitely stands out the strongest.

Suggested Citation

  • Ewelina Kochanek, 2022. "The Role of Hydrogen in the Visegrad Group Approach to Energy Transition," Energies, MDPI, vol. 15(19), pages 1-18, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7235-:d:931591
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7235/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7235/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lidia Gawlik & Eugeniusz Mokrzycki, 2021. "Analysis of the Polish Hydrogen Strategy in the Context of the EU’s Strategic Documents on Hydrogen," Energies, MDPI, vol. 14(19), pages 1-15, October.
    2. Ewelina Kochanek, 2021. "The Energy Transition in the Visegrad Group Countries," Energies, MDPI, vol. 14(8), pages 1-13, April.
    3. Elkhan Richard Sadik-Zada, 2021. "Political Economy of Green Hydrogen Rollout: A Global Perspective," Sustainability, MDPI, vol. 13(23), pages 1-11, December.
    4. dos Santos, Kenia Gabriela & Eckert, Caroline Thaís & De Rossi, Eduardo & Bariccatti, Reinaldo Aparecido & Frigo, Elisandro Pires & Lindino, Cleber Antonio & Alves, Helton José, 2017. "Hydrogen production in the electrolysis of water in Brazil, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 563-571.
    5. André Wolf & Nils Zander, 2021. "Green Hydrogen in Europe: Do Strategies Meet Expectations?," Intereconomics: Review of European Economic Policy, Springer;ZBW - Leibniz Information Centre for Economics;Centre for European Policy Studies (CEPS), vol. 56(6), pages 316-323, November.
    6. Capros, Pantelis & Zazias, Georgios & Evangelopoulou, Stavroula & Kannavou, Maria & Fotiou, Theofano & Siskos, Pelopidas & De Vita, Alessia & Sakellaris, Konstantinos, 2019. "Energy-system modelling of the EU strategy towards climate-neutrality," Energy Policy, Elsevier, vol. 134(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna Barwińska Małajowicz & Miroslava Knapková & Krzysztof Szczotka & Miriam Martinkovičová & Radosław Pyrek, 2022. "Energy Efficiency Policies in Poland and Slovakia in the Context of Individual Well-Being," Energies, MDPI, vol. 16(1), pages 1-29, December.
    2. Roman Blazek & Pavol Durana & Jakub Michulek, 2023. "Renaissance of Creative Accounting Due to the Pandemic: New Patterns Explored by Correspondence Analysis," Stats, MDPI, vol. 6(1), pages 1-20, March.
    3. Banaja Mohanty & Rajvikram Madurai Elavarasan & Hany M. Hasanien & Elangovan Devaraj & Rania A. Turky & Rishi Pugazhendhi, 2022. "Parameters Identification of Proton Exchange Membrane Fuel Cell Model Based on the Lightning Search Algorithm," Energies, MDPI, vol. 15(21), pages 1-19, October.
    4. Jae-Eun Shin, 2022. "Hydrogen Technology Development and Policy Status by Value Chain in South Korea," Energies, MDPI, vol. 15(23), pages 1-19, November.
    5. Marzena Smol & Paulina Marcinek & Zuzana Šimková & Tomáš Bakalár & Milan Hemzal & Jiří Jaromír Klemeš & Yee Van Fan & Kinga Lorencz & Eugeniusz Koda & Anna Podlasek, 2022. "Inventory of Good Practices of Sustainable and Circular Phosphorus Management in the Visegrad Group (V4)," Resources, MDPI, vol. 12(1), pages 1-17, December.
    6. Rishabh Agarwal, 2022. "Transition to a Hydrogen-Based Economy: Possibilities and Challenges," Sustainability, MDPI, vol. 14(23), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arturo Vallejos-Romero & Minerva Cordoves-Sánchez & César Cisternas & Felipe Sáez-Ardura & Ignacio Rodríguez & Antonio Aledo & Álex Boso & Jordi Prades & Boris Álvarez, 2022. "Green Hydrogen and Social Sciences: Issues, Problems, and Future Challenges," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
    2. Mubariz Mammadli, 2022. "Environmentally Responsible Business Approaches in Azerbaijan," Sustainability, MDPI, vol. 14(10), pages 1-25, May.
    3. Joanna Rzempała & Daniel Borkowski & Artur Piotr Rzempała, 2021. "Risk Identification in Cogeneration (Combined Heat and Power) Projects: A Polish Case Study," Energies, MDPI, vol. 15(1), pages 1-16, December.
    4. Janusz Myszczyszyn & Błażej Suproń, 2022. "Relationship among Economic Growth, Energy Consumption, CO 2 Emission, and Urbanization: An Econometric Perspective Analysis," Energies, MDPI, vol. 15(24), pages 1-18, December.
    5. Elena Crespi & Giulio Guandalini & German Nieto Cantero & Stefano Campanari, 2022. "Dynamic Modeling of a PEM Fuel Cell Power Plant for Flexibility Optimization and Grid Support," Energies, MDPI, vol. 15(13), pages 1-23, June.
    6. Stergios Statharas & Yannis Moysoglou & Pelopidas Siskos & Pantelis Capros, 2021. "Simulating the Evolution of Business Models for Electricity Recharging Infrastructure Development by 2030: A Case Study for Greece," Energies, MDPI, vol. 14(9), pages 1-24, April.
    7. Xu, Guangyue & Dong, Haoyun & Xu, Zhenci & Bhattarai, Nishan, 2022. "China can reach carbon neutrality before 2050 by improving economic development quality," Energy, Elsevier, vol. 243(C).
    8. Mariusz Zieliński & Izabela Jonek-Kowalska, 2021. "Does CSR Affect the Profitability and Valuation of Energy Companies? An Example from Poland," Energies, MDPI, vol. 14(12), pages 1-24, June.
    9. Leonhard Povacz & Ramchandra Bhandari, 2023. "Analysis of the Levelized Cost of Renewable Hydrogen in Austria," Sustainability, MDPI, vol. 15(5), pages 1-23, March.
    10. Yunesky Masip Macía & Pablo Rodríguez Machuca & Angel Alexander Rodríguez Soto & Roberto Carmona Campos, 2021. "Green Hydrogen Value Chain in the Sustainability for Port Operations: Case Study in the Region of Valparaiso, Chile," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
    11. Tomasz Zema & Adam Sulich, 2022. "Models of Electricity Price Forecasting: Bibliometric Research," Energies, MDPI, vol. 15(15), pages 1-18, August.
    12. Lee, Boreum & Lim, Dongjun & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2021. "Techno-economic analysis of H2 energy storage system based on renewable energy certificate," Renewable Energy, Elsevier, vol. 167(C), pages 91-98.
    13. Tomasz Jałowiec & Dariusz Grala & Piotr Maśloch & Henryk Wojtaszek & Grzegorz Maśloch & Agnieszka Wójcik-Czerniawska, 2022. "Analysis of the Implementation of Functional Hydrogen Assumptions in Poland and Germany," Energies, MDPI, vol. 15(22), pages 1-25, November.
    14. Wildauer, Rafael & Leitch, Stuart & Kapeller, Jakob, 2020. "How to boost the European Green Deal's scale and ambition," ifso expertise 8, University of Duisburg-Essen, Institute for Socioeconomics (ifso).
    15. Li, Chengzhe & Zhang, Libo & Ou, Zihan & Ma, Jiayu, 2022. "Using system dynamics to evaluate the impact of subsidy policies on green hydrogen industry in China," Energy Policy, Elsevier, vol. 165(C).
    16. González Rodríguez, Daniel & Brayner de Oliveira Lira, Carlos Alberto & García Parra, Lázaro Roger & García Hernández, Carlos Rafael & de la Torre Valdés, Raciel, 2018. "Computational model of a sulfur-iodine thermochemical water splitting system coupled to a VHTR for nuclear hydrogen production," Energy, Elsevier, vol. 147(C), pages 1165-1176.
    17. Umair Yaqub Qazi, 2022. "Future of Hydrogen as an Alternative Fuel for Next-Generation Industrial Applications; Challenges and Expected Opportunities," Energies, MDPI, vol. 15(13), pages 1-40, June.
    18. Montazerinejad, H. & Eicker, U., 2022. "Recent development of heat and power generation using renewable fuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    19. Marcin Bukowski & Janusz Majewski & Agnieszka Sobolewska, 2023. "The Environmental Impact of Changes in the Structure of Electricity Sources in Europe," Energies, MDPI, vol. 16(1), pages 1-22, January.
    20. Katharina Löhr & Custódio Efraim Matavel & Sophia Tadesse & Masoud Yazdanpanah & Stefan Sieber & Nadejda Komendantova, 2022. "Just Energy Transition: Learning from the Past for a More Just and Sustainable Hydrogen Transition in West Africa," Land, MDPI, vol. 11(12), pages 1-23, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7235-:d:931591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.