IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i18p6812-d917918.html
   My bibliography  Save this article

Energy Use of Woody Biomass in Poland: Its Resources and Harvesting Form

Author

Listed:
  • Marek Wieruszewski

    (Department Mechanical Wood Technology, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland)

  • Aleksandra Górna

    (Department of Forestry Economics and Technology, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland)

  • Zygmunt Stanula

    (Department of Forestry Economics and Technology, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland)

  • Krzysztof Adamowicz

    (Department of Forestry Economics and Technology, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland)

Abstract

Currently, woodchips and logging residues form the greatest share of biomass fuels used to generate heat in combined heat and power plants. They are supplied from various regions of the EU. The calorific values of the wood species used as biomass may vary significantly depending on the moisture and composition of the fuel, harvest seasonality, location, and other factors. This article presents the main resources of forest biomass and its characteristic features, as well as the calorific value of woodchips depending on the moisture content. Our research is based on the source data of forest resources from the State Forests National Forest Holding (PGLLP) in Poland. The research conducted by the main forestry enterprise in Poland covered a period of four years. The data on the harvesting of woodchips and logging residues converted into the calorific values of biomass were based on our research and a review of reference publications. Standard methods were used in the research, which included an analysis of the species and assortment structure of the forest biomass of energetic significance that was available for use. The research showed that the moisture content of the woodchips and lump wood was about 30%. The average annual energy value of the wood in the total area of forest resources was 0.07 GJ/ha, whereas the highest value was 0.14 GJ/ha. Between 2018 and 2021, the average energy resources of forest biomass in Poland increased from 351.8 TJ to 498.4 TJ.

Suggested Citation

  • Marek Wieruszewski & Aleksandra Górna & Zygmunt Stanula & Krzysztof Adamowicz, 2022. "Energy Use of Woody Biomass in Poland: Its Resources and Harvesting Form," Energies, MDPI, vol. 15(18), pages 1-21, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6812-:d:917918
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/18/6812/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/18/6812/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Murphy, Fionnuala & Devlin, Ger & McDonnell, Kevin, 2014. "Forest biomass supply chains in Ireland: A life cycle assessment of GHG emissions and primary energy balances," Applied Energy, Elsevier, vol. 116(C), pages 1-8.
    2. Baral Gautam, Yamuna & Pelkonen, Paavo & Halder, Pradipta, 2013. "Perceptions of bioenergy among Nepalese foresters – Survey results and policy implications," Renewable Energy, Elsevier, vol. 57(C), pages 533-538.
    3. Naik, Satyanarayan & Goud, Vaibhav V. & Rout, Prasant K. & Jacobson, Kathlene & Dalai, Ajay K., 2010. "Characterization of Canadian biomass for alternative renewable biofuel," Renewable Energy, Elsevier, vol. 35(8), pages 1624-1631.
    4. Jan Banaś & Katarzyna Utnik-Banaś, 2022. "Using Timber as a Renewable Resource for Energy Production in Sustainable Forest Management," Energies, MDPI, vol. 15(6), pages 1-8, March.
    5. Katarzyna Mydlarz & Marek Wieruszewski, 2022. "Economic, Technological as Well as Environmental and Social Aspects of Local Use of Wood By-Products Generated in Sawmills for Energy Purposes," Energies, MDPI, vol. 15(4), pages 1-13, February.
    6. Malico, Isabel & Nepomuceno Pereira, Ricardo & Gonçalves, Ana Cristina & Sousa, Adélia M.O., 2019. "Current status and future perspectives for energy production from solid biomass in the European industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 960-977.
    7. Ralf Pecenka & Hannes Lenz & Simeon Olatayo Jekayinfa & Thomas Hoffmann, 2020. "Influence of Tree Species, Harvesting Method and Storage on Energy Demand and Wood Chip Quality When Chipping Poplar, Willow and Black Locust," Agriculture, MDPI, vol. 10(4), pages 1-15, April.
    8. Marcin Jewiarz & Marek Wróbel & Krzysztof Mudryk & Szymon Szufa, 2020. "Impact of the Drying Temperature and Grinding Technique on Biomass Grindability," Energies, MDPI, vol. 13(13), pages 1-22, July.
    9. Marek Wieruszewski & Aleksandra Górna & Katarzyna Mydlarz & Krzysztof Adamowicz, 2022. "Wood Biomass Resources in Poland Depending on Forest Structure and Industrial Processing of Wood Raw Material," Energies, MDPI, vol. 15(13), pages 1-17, July.
    10. Jayarathna, Lasinidu & Kent, Geoff & O'Hara, Ian & Hobson, Philip, 2020. "A Geographical Information System based framework to identify optimal location and size of biomass energy plants using single or multiple biomass types," Applied Energy, Elsevier, vol. 275(C).
    11. Karakosta, Charikleia & Dimopoulou, Stamatia & Doukas, Haris & Psarras, John, 2011. "The potential role of renewable energy in Moldova," Renewable Energy, Elsevier, vol. 36(12), pages 3550-3557.
    12. Miguel-Angel Perea-Moreno & Esther Samerón-Manzano & Alberto-Jesus Perea-Moreno, 2019. "Biomass as Renewable Energy: Worldwide Research Trends," Sustainability, MDPI, vol. 11(3), pages 1-19, February.
    13. Georgios Maris & Floros Flouros, 2021. "The Green Deal, National Energy and Climate Plans in Europe: Member States’ Compliance and Strategies," Administrative Sciences, MDPI, vol. 11(3), pages 1-17, July.
    14. Janine Schweier & Boško Blagojević & Rachele Venanzi & Francesco Latterini & Rodolfo Picchio, 2019. "Sustainability Assessment of Alternative Strip Clear Cutting Operations for Wood Chip Production in Renaturalization Management of Pine Stands," Energies, MDPI, vol. 12(17), pages 1-26, August.
    15. Krzysztof Mudryk & Marcin Jewiarz & Marek Wróbel & Marcin Niemiec & Arkadiusz Dyjakon, 2021. "Evaluation of Urban Tree Leaf Biomass-Potential, Physico-Mechanical and Chemical Parameters of Raw Material and Solid Biofuel," Energies, MDPI, vol. 14(4), pages 1-14, February.
    16. George Yaw Obeng & Derrick Yeboah Amoah & Richard Opoku & Charles K. K. Sekyere & Eunice Akyereko Adjei & Ebenezer Mensah, 2020. "Coconut Wastes as Bioresource for Sustainable Energy: Quantifying Wastes, Calorific Values and Emissions in Ghana," Energies, MDPI, vol. 13(9), pages 1-13, May.
    17. Abbasi, Tasneem & Abbasi, S.A., 2010. "Biomass energy and the environmental impacts associated with its production and utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 919-937, April.
    18. Lauri, Pekka & Havlík, Petr & Kindermann, Georg & Forsell, Nicklas & Böttcher, Hannes & Obersteiner, Michael, 2014. "Woody biomass energy potential in 2050," Energy Policy, Elsevier, vol. 66(C), pages 19-31.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Svetlana Proskurina & Clara Mendoza-Martinez, 2023. "Expectations for Bioenergy Considering Carbon Neutrality Targets in the EU," Energies, MDPI, vol. 16(14), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marek Wieruszewski & Aleksandra Górna & Katarzyna Mydlarz & Krzysztof Adamowicz, 2022. "Wood Biomass Resources in Poland Depending on Forest Structure and Industrial Processing of Wood Raw Material," Energies, MDPI, vol. 15(13), pages 1-17, July.
    2. Antar, Mohammed & Lyu, Dongmei & Nazari, Mahtab & Shah, Ateeq & Zhou, Xiaomin & Smith, Donald L., 2021. "Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    3. Luigi Pari & Francesco Latterini & Walter Stefanoni, 2020. "Herbaceous Oil Crops, a Review on Mechanical Harvesting State of the Art," Agriculture, MDPI, vol. 10(8), pages 1-25, July.
    4. Eksi, Guner & Karaosmanoglu, Filiz, 2017. "Combined bioheat and biopower: A technology review and an assessment for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1313-1332.
    5. Li, Jin & Wang, Rui & Li, Haoran & Nie, Yaoyu & Song, Xinke & Li, Mingyu & Shi, Mai & Zheng, Xinzhu & Cai, Wenjia & Wang, Can, 2021. "Unit-level cost-benefit analysis for coal power plants retrofitted with biomass co-firing at a national level by combined GIS and life cycle assessment," Applied Energy, Elsevier, vol. 285(C).
    6. Anna Kożuch & Dominika Cywicka & Krzysztof Adamowicz & Marek Wieruszewski & Emilia Wysocka-Fijorek & Paweł Kiełbasa, 2023. "The Use of Forest Biomass for Energy Purposes in Selected European Countries," Energies, MDPI, vol. 16(15), pages 1-21, August.
    7. Marek Wieruszewski & Katarzyna Mydlarz, 2022. "The Potential of the Bioenergy Market in the European Union—An Overview of Energy Biomass Resources," Energies, MDPI, vol. 15(24), pages 1-23, December.
    8. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    9. Molino, A. & Nanna, F. & Villone, A., 2014. "Characterization of biomasses in the southern Italy regions for their use in thermal processes," Applied Energy, Elsevier, vol. 131(C), pages 180-188.
    10. Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.
    11. Niu, Wenjuan & Han, Lujia & Liu, Xian & Huang, Guangqun & Chen, Longjian & Xiao, Weihua & Yang, Zengling, 2016. "Twenty-two compositional characterizations and theoretical energy potentials of extensively diversified China's crop residues," Energy, Elsevier, vol. 100(C), pages 238-250.
    12. Zhai, Jihua & Burke, Ian T. & Stewart, Douglas I., 2021. "Beneficial management of biomass combustion ashes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    13. Giuseppe Maggiotto & Gianpiero Colangelo & Marco Milanese & Arturo de Risi, 2023. "Thermochemical Technologies for the Optimization of Olive Wood Biomass Energy Exploitation: A Review," Energies, MDPI, vol. 16(19), pages 1-17, September.
    14. Miguel-Angel Perea-Moreno & Quetzalcoatl Hernandez-Escobedo & Fernando Rueda-Martinez & Alberto-Jesus Perea-Moreno, 2020. "Zapote Seed ( Pouteria mammosa L. ) Valorization for Thermal Energy Generation in Tropical Climates," Sustainability, MDPI, vol. 12(10), pages 1-21, May.
    15. Saidur, R. & Abdelaziz, E.A. & Demirbas, A. & Hossain, M.S. & Mekhilef, S., 2011. "A review on biomass as a fuel for boilers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2262-2289, June.
    16. Holmatov, B. & Hoekstra, A.Y. & Krol, M.S., 2019. "Land, water and carbon footprints of circular bioenergy production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 224-235.
    17. Mariana S. T. Amândio & Joana M. Pereira & Jorge M. S. Rocha & Luísa S. Serafim & Ana M. R. B. Xavier, 2022. "Getting Value from Pulp and Paper Industry Wastes: On the Way to Sustainability and Circular Economy," Energies, MDPI, vol. 15(11), pages 1-31, June.
    18. Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    19. Francesca Nardin & Fabrizio Mazzetto, 2014. "Mapping of Biomass Fluxes: A Method for Optimizing Biogas-Refinery of Livestock Effluents," Sustainability, MDPI, vol. 6(9), pages 1-21, September.
    20. Tan, Ting & Yan, Zhimiao & Zou, Hongxiang & Ma, Kejing & Liu, Fengrui & Zhao, Linchuan & Peng, Zhike & Zhang, Wenming, 2019. "Renewable energy harvesting and absorbing via multi-scale metamaterial systems for Internet of things," Applied Energy, Elsevier, vol. 254(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6812-:d:917918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.