IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2557-d546388.html
   My bibliography  Save this article

Techno-Economic Assessment of Coal-Fired Power Unit Decarbonization Retrofit with KP-FHR Small Modular Reactors

Author

Listed:
  • Łukasz Bartela

    (Department of Power Engineering and Turbomachinery, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Paweł Gładysz

    (Faculty of Energy and Fuels, AGH University of Science and Technology, 30-059 Krakow, Poland)

  • Charalampos Andreades

    (Kairos Power LLC, Alameda, CA 94501, USA)

  • Staffan Qvist

    (Qvist Consulting Limited, London UB1 3EP, UK)

  • Janusz Zdeb

    (Tauron Wytwarzanie S.A., 43-603 Jaworzno, Poland)

Abstract

The near and mid-term future of the existing Polish coal-fired power fleet is uncertain. The longer-term operation of unabated coal power is incompatible with climate policy and is economically challenging because of the increasing price of CO 2 emission allowances in the EU. The results of the techno-economic analysis presented in this paper indicate that the retrofit of existing coal-fired units, by means of replacing coal-fired boilers with small modular reactors, may be an interesting option for the Polish energy sector. It has been shown that the retrofit can reduce the costs in relation to greenfield investments by as much as 35%. This analysis focuses on the repowering of a 460 MW supercritical coal-fired unit based on the Łagisza power plant design with high temperature small modular nuclear reactors based on the 320 MW th unit design by Kairos Power. The technical analyses did not show any major difficulties in integrating. The economic analyses show that the proposed retrofits can be economically justified, and, in this respect, they are more advantageous than greenfield investments. For the base economic scenario, the difference in NPV (Net Present Value) is more favorable for the retrofit by 556.9 M€ and the discounted payback period for this pathway is 10 years.

Suggested Citation

  • Łukasz Bartela & Paweł Gładysz & Charalampos Andreades & Staffan Qvist & Janusz Zdeb, 2021. "Techno-Economic Assessment of Coal-Fired Power Unit Decarbonization Retrofit with KP-FHR Small Modular Reactors," Energies, MDPI, vol. 14(9), pages 1-25, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2557-:d:546388
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2557/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2557/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bachmann, Till M. & van der Kamp, Jonathan, 2014. "Environmental cost-benefit analysis and the EU (European Union) Industrial Emissions Directive: Exploring the societal efficiency of a DeNOx retrofit at a coal-fired power plant," Energy, Elsevier, vol. 68(C), pages 125-139.
    2. Schakel, Wouter & Meerman, Hans & Talaei, Alireza & Ramírez, Andrea & Faaij, André, 2014. "Comparative life cycle assessment of biomass co-firing plants with carbon capture and storage," Applied Energy, Elsevier, vol. 131(C), pages 441-467.
    3. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2015. "Global zero-carbon energy pathways using viable mixes of nuclear and renewables," Applied Energy, Elsevier, vol. 143(C), pages 451-459.
    4. Mignacca, B. & Locatelli, G., 2020. "Economics and finance of Small Modular Reactors: A systematic review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    5. Rusin, Andrzej & Bieniek, Michał, 2017. "Maintenance planning of power plant elements based on avoided risk value," Energy, Elsevier, vol. 134(C), pages 672-680.
    6. LECOMTE Thierry & FERRERIA DE LA FUENTE Jose Felix & NEUWAHL Frederik & CANOVA Michele & PINASSEAU Antoine & JANKOV Ivan & BRINKMANN Thomas & ROUDIER Serge & DELGADO SANCHO Luis, 2017. "Best Available Techniques (BAT) Reference Document for Large Combustion Plants. Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control)," JRC Research Reports JRC107769, Joint Research Centre.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Łukasz Bartela & Paweł Gładysz & Jakub Ochmann & Staffan Qvist & Lou Martinez Sancho, 2022. "Repowering a Coal Power Unit with Small Modular Reactors and Thermal Energy Storage," Energies, MDPI, vol. 15(16), pages 1-28, August.
    2. Haneklaus, Nils & Qvist, Staffan & Gładysz, Paweł & Bartela, Łukasz, 2023. "Why coal-fired power plants should get nuclear-ready," Energy, Elsevier, vol. 280(C).
    3. Jiang, Dianqiang & Zhang, Dalin & Li, Xinyu & Wang, Shibao & Wang, Chenglong & Qin, Hao & Guo, Yanwen & Tian, Wenxi & Su, G.H. & Qiu, Suizheng, 2022. "Fluoride-salt-cooled high-temperature reactors: Review of historical milestones, research status, challenges, and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nock, Destenie & Baker, Erin, 2019. "Holistic multi-criteria decision analysis evaluation of sustainable electric generation portfolios: New England case study," Applied Energy, Elsevier, vol. 242(C), pages 655-673.
    2. Zang, Guiyan & Zhang, Jianan & Jia, Junxi & Lora, Electo Silva & Ratner, Albert, 2020. "Life cycle assessment of power-generation systems based on biomass integrated gasification combined cycles," Renewable Energy, Elsevier, vol. 149(C), pages 336-346.
    3. Nasrin Aghamohammadi & Stacy Simai Reginald & Ahmad Shamiri & Ali Akbar Zinatizadeh & Li Ping Wong & Nik Meriam Binti Nik Sulaiman, 2016. "An Investigation of Sustainable Power Generation from Oil Palm Biomass: A Case Study in Sarawak," Sustainability, MDPI, vol. 8(5), pages 1-19, April.
    4. Christian von Hirschhausen, 2022. "Nuclear Power in the Twenty-first Century (Part II) - The Economic Value of Plutonium," Discussion Papers of DIW Berlin 2011, DIW Berlin, German Institute for Economic Research.
    5. Alessandra Cantini & Leonardo Leoni & Filippo De Carlo & Marcello Salvio & Chiara Martini & Fabrizio Martini, 2021. "Technological Energy Efficiency Improvements in Cement Industries," Sustainability, MDPI, vol. 13(7), pages 1-28, March.
    6. Marco Abis & Martina Bruno & Kerstin Kuchta & Franz-Georg Simon & Raul Grönholm & Michel Hoppe & Silvia Fiore, 2020. "Assessment of the Synergy between Recycling and Thermal Treatments in Municipal Solid Waste Management in Europe," Energies, MDPI, vol. 13(23), pages 1-15, December.
    7. Lupiáñez, Carlos & Carmen Mayoral, M. & Díez, Luis I. & Pueyo, Eloy & Espatolero, Sergio & Manuel Andrés, J., 2016. "The role of limestone during fluidized bed oxy-combustion of coal and biomass," Applied Energy, Elsevier, vol. 184(C), pages 670-680.
    8. Erwan Hermawan & Usman Sudjadi, 2022. "Integrated Nuclear-Renewable Energy System for Industrialization in West Nusa Tenggara Province, Indonesia: Economic, Potential Site, and Policy Recommendation," International Journal of Energy Economics and Policy, Econjournals, vol. 12(4), pages 146-159, July.
    9. Martyna Tomala & Andrzej Rusin & Adam Wojaczek, 2020. "Risk-Based Planning of Diagnostic Testing of Turbines Operating with Increased Flexibility," Energies, MDPI, vol. 13(13), pages 1-16, July.
    10. Wealer, B. & Bauer, S. & Hirschhausen, C.v. & Kemfert, C. & Göke, L., 2021. "Investing into third generation nuclear power plants - Review of recent trends and analysis of future investments using Monte Carlo Simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    11. Qu, Chunzi & Bang, Rasmus Noss, 2023. "Comparative Investment Analysis of Wind and Nuclear Energy: Assessing the Impact of Changes in the Electricity Mix and Required Government Support for Investment Parity," Discussion Papers 2023/8, Norwegian School of Economics, Department of Business and Management Science.
    12. Su, Meirong & Pauleit, Stephan & Yin, Xuemei & Zheng, Ying & Chen, Shaoqing & Xu, Chao, 2016. "Greenhouse gas emission accounting for EU member states from 1991 to 2012," Applied Energy, Elsevier, vol. 184(C), pages 759-768.
    13. Agbor, Ezinwa & Oyedun, Adetoyese Olajire & Zhang, Xiaolei & Kumar, Amit, 2016. "Integrated techno-economic and environmental assessments of sixty scenarios for co-firing biomass with coal and natural gas," Applied Energy, Elsevier, vol. 169(C), pages 433-449.
    14. Liu, Yanyan & Huang, Guohe & Chen, Jiapei & Zhang, Xiaoyue & Zheng, Xiaogui & Zhai, Mengyu, 2022. "Development of an optimization-aided small modular reactor siting model – A case study of Saskatchewan, Canada," Applied Energy, Elsevier, vol. 305(C).
    15. Kang, Yating & Yang, Qing & Bartocci, Pietro & Wei, Hongjian & Liu, Sylvia Shuhan & Wu, Zhujuan & Zhou, Hewen & Yang, Haiping & Fantozzi, Francesco & Chen, Hanping, 2020. "Bioenergy in China: Evaluation of domestic biomass resources and the associated greenhouse gas mitigation potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    16. Nian, Victor & Mignacca, Benito & Locatelli, Giorgio, 2022. "Policies toward net-zero: Benchmarking the economic competitiveness of nuclear against wind and solar energy," Applied Energy, Elsevier, vol. 320(C).
    17. Karolina Sobieraj & Sylwia Stegenta-Dąbrowska & Jacek A. Koziel & Andrzej Białowiec, 2021. "Modeling of CO Accumulation in the Headspace of the Bioreactor during Organic Waste Composting," Energies, MDPI, vol. 14(5), pages 1-17, March.
    18. Ding, Ning & Liu, Jingru & Yang, Jianxin & Yang, Dong, 2017. "Comparative life cycle assessment of regional electricity supplies in China," Resources, Conservation & Recycling, Elsevier, vol. 119(C), pages 47-59.
    19. Panagiotis Grammelis & Nikolaos Margaritis & Petros Dallas & Dimitrios Rakopoulos & Georgios Mavrias, 2021. "A Review on Management of End of Life Tires (ELTs) and Alternative Uses of Textile Fibers," Energies, MDPI, vol. 14(3), pages 1-20, January.
    20. Wu, Zitao & Zhai, Haibo, 2021. "Consumptive life cycle water use of biomass-to-power plants with carbon capture and sequestration," Applied Energy, Elsevier, vol. 303(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2557-:d:546388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.