IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i5p1367-d509248.html
   My bibliography  Save this article

Modeling of CO Accumulation in the Headspace of the Bioreactor during Organic Waste Composting

Author

Listed:
  • Karolina Sobieraj

    (Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 37a Chełmońskiego Str., 51-630 Wrocław, Poland)

  • Sylwia Stegenta-Dąbrowska

    (Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 37a Chełmońskiego Str., 51-630 Wrocław, Poland)

  • Jacek A. Koziel

    (Department of Agricultural and Biosystems Engineering, Iowa State University, 605 Bissell Road, Ames, IA 50011, USA)

  • Andrzej Białowiec

    (Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 37a Chełmońskiego Str., 51-630 Wrocław, Poland
    Department of Agricultural and Biosystems Engineering, Iowa State University, 605 Bissell Road, Ames, IA 50011, USA)

Abstract

Advanced technologies call for composting indoors for minimized impact on the surrounding environment. However, enclosing compost piles inside halls may cause the accumulation of toxic pollutants, including carbon monoxide (CO). Thus, there is a need to assess the occupational risk to workers that can be exposed to CO concentrations > 300 ppm at the initial stage of the process. The objectives were to (1) develop a model of CO accumulation in the headspace of the bioreactor during organic waste composting and (2) assess the impact of headspace ventilation of enclosed compost. The maximum allowable CO level inside the bioreactor headspace for potential short-term occupational exposure up to 10 min was 100 ppm. The composting was modeled in the horizontal static reactor over 14 days in seven scenarios, differing in the ratio of headspace-to-waste volumes (H:W) (4:1, 3:1, 2:1, 1:1, 1:2, 1:3, 1:4). Headspace CO concentration exceeded 100 ppm in each variant with the maximum value of 36.1% without ventilation and 3.2% with the daily release of accumulated CO. The airflow necessary to maintain CO < 100 ppmv should be at least 7.15 m 3 ·(h·Mg w.m.) −1 . The H:W > 4:1 and the height of compost pile < 1 m were less susceptible to CO accumulation.

Suggested Citation

  • Karolina Sobieraj & Sylwia Stegenta-Dąbrowska & Jacek A. Koziel & Andrzej Białowiec, 2021. "Modeling of CO Accumulation in the Headspace of the Bioreactor during Organic Waste Composting," Energies, MDPI, vol. 14(5), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1367-:d:509248
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/5/1367/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/5/1367/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sylwia Stegenta & Karolina Sobieraj & Grzegorz Pilarski & Jacek A. Koziel & Andrzej Białowiec, 2019. "Analysis of the Spatial and Temporal Distribution of Process Gases within Municipal Biowaste Compost," Sustainability, MDPI, vol. 11(8), pages 1-23, April.
    2. PINASSEAU Antoine & ZERGER Benoît & ROTH Joze & CANOVA Michele & ROUDIER Serge, 2018. "Best Available Techniques (BAT) Reference Document for Waste treatment Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control)," JRC Research Reports JRC113018, Joint Research Centre.
    3. Sylwia Stegenta-Dąbrowska & Karolina Sobieraj & Jacek A. Koziel & Jerzy Bieniek & Andrzej Białowiec, 2020. "Kinetics of Biotic and Abiotic CO Production during the Initial Phase of Biowaste Composting," Energies, MDPI, vol. 13(20), pages 1-22, October.
    4. LECOMTE Thierry & FERRERIA DE LA FUENTE Jose Felix & NEUWAHL Frederik & CANOVA Michele & PINASSEAU Antoine & JANKOV Ivan & BRINKMANN Thomas & ROUDIER Serge & DELGADO SANCHO Luis, 2017. "Best Available Techniques (BAT) Reference Document for Large Combustion Plants. Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control)," JRC Research Reports JRC107769, Joint Research Centre.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sylwia Stegenta-Dąbrowska & Peter F. Randerson & Sarah R. Christofides & Andrzej Białowiec, 2020. "Carbon Monoxide Formation during Aerobic Biostabilization of the Organic Fraction of Municipal Solid Waste: The Influence of Technical Parameters in a Full-Scale Treatment System," Energies, MDPI, vol. 13(21), pages 1-21, October.
    2. Alessandra Cantini & Leonardo Leoni & Filippo De Carlo & Marcello Salvio & Chiara Martini & Fabrizio Martini, 2021. "Technological Energy Efficiency Improvements in Cement Industries," Sustainability, MDPI, vol. 13(7), pages 1-28, March.
    3. Marco Abis & Martina Bruno & Kerstin Kuchta & Franz-Georg Simon & Raul Grönholm & Michel Hoppe & Silvia Fiore, 2020. "Assessment of the Synergy between Recycling and Thermal Treatments in Municipal Solid Waste Management in Europe," Energies, MDPI, vol. 13(23), pages 1-15, December.
    4. Vesna Mislej & Barbara Novosel, 2022. "Specification and Classification of Pelletised Dried Sewage Sludge: Identifying Its Key Properties as a Renewable Material for Enabling Environmentally Non-Harmful Energy Utilisation," Sustainability, MDPI, vol. 14(22), pages 1-24, November.
    5. Sylwia Stegenta-Dąbrowska & Karolina Sobieraj & Jacek A. Koziel & Jerzy Bieniek & Andrzej Białowiec, 2020. "Kinetics of Biotic and Abiotic CO Production during the Initial Phase of Biowaste Composting," Energies, MDPI, vol. 13(20), pages 1-22, October.
    6. Panagiotis Grammelis & Nikolaos Margaritis & Petros Dallas & Dimitrios Rakopoulos & Georgios Mavrias, 2021. "A Review on Management of End of Life Tires (ELTs) and Alternative Uses of Textile Fibers," Energies, MDPI, vol. 14(3), pages 1-20, January.
    7. Leonardo Leoni & Alessandra Cantini & Filippo De Carlo & Marcello Salvio & Chiara Martini & Claudia Toro & Fabrizio Martini, 2021. "Energy-Saving Technology Opportunities and Investments of the Italian Foundry Industry," Energies, MDPI, vol. 14(24), pages 1-29, December.
    8. Konstantinos Koasidis & Alexandros Nikas & Hera Neofytou & Anastasios Karamaneas & Ajay Gambhir & Jakob Wachsmuth & Haris Doukas, 2020. "The UK and German Low-Carbon Industry Transitions from a Sectoral Innovation and System Failures Perspective," Energies, MDPI, vol. 13(19), pages 1-34, September.
    9. Rossana Bellopede & Lorena Zichella & Paola Marini, 2020. "Glass Waste 3 : A Preliminary Study for a New Industrial Recovery Processing," Sustainability, MDPI, vol. 12(5), pages 1-11, March.
    10. Sylwia Stegenta-Dąbrowska & Jakub Rogosz & Przemysław Bukowski & Marcin Dębowski & Peter F. Randerson & Jerzy Bieniek & Andrzej Białowiec, 2020. "The Fluctuation of Process Gasses Especially of Carbon Monoxide during Aerobic Biostabilization of an Organic Fraction of Municipal Solid Waste under Different Technological Regimes," Data, MDPI, vol. 5(2), pages 1-7, April.
    11. Ann Colles & Dries Coertjens & Bert Morrens & Elly Den Hond & Melissa Paulussen & Liesbeth Bruckers & Eva Govarts & Adrian Covaci & Gudrun Koppen & Kim Croes & Vera Nelen & Nicolas Van Larebeke & Stef, 2021. "Human Biomonitoring Data Enables Evidence-Informed Policy to Reduce Internal Exposure to Persistent Organic Compounds: A Case Study," IJERPH, MDPI, vol. 18(11), pages 1-21, May.
    12. Riccardo Tinivella & Riccardo Bargiggia & Giampiero Zanoni & Arianna Callegari & Andrea G. Capodaglio, 2023. "High-Strength, Chemical Industry Wastewater Treatment Feasibility Study for Energy Recovery," Sustainability, MDPI, vol. 15(23), pages 1-23, November.
    13. Magdalena Rybaczewska-Błażejowska & Aneta Masternak-Janus, 2021. "Assessing and Improving the Eco-Efficiency of Manufacturing: Learning and Challenges from a Polish Case Study," Energies, MDPI, vol. 14(23), pages 1-20, December.
    14. Aleksandra Leśniańska & Beata Janowska & Robert Sidełko, 2022. "Immobilization of Zn and Cu in Conditions of Reduced C/N Ratio during Sewage Sludge Composting Process," Energies, MDPI, vol. 15(12), pages 1-19, June.
    15. Łukasz Bartela & Paweł Gładysz & Charalampos Andreades & Staffan Qvist & Janusz Zdeb, 2021. "Techno-Economic Assessment of Coal-Fired Power Unit Decarbonization Retrofit with KP-FHR Small Modular Reactors," Energies, MDPI, vol. 14(9), pages 1-25, April.
    16. Maedeh Rahnama Mobarakeh & Miguel Santos Silva & Thomas Kienberger, 2021. "Pulp and Paper Industry: Decarbonisation Technology Assessment to Reach CO 2 Neutral Emissions—An Austrian Case Study," Energies, MDPI, vol. 14(4), pages 1-30, February.
    17. Agnieszka Medyńska-Juraszek & Magdalena Bednik & Piotr Chohura, 2020. "Assessing the Influence of Compost and Biochar Amendments on the Mobility and Uptake of Heavy Metals by Green Leafy Vegetables," IJERPH, MDPI, vol. 17(21), pages 1-16, October.
    18. Stefano Castelluccio & Claudio Comoglio & Silvia Fiore, 2022. "Environmental Performance Reporting and Assessment of the Biodegradable Waste Treatment Plants Registered to EMAS in Italy," Sustainability, MDPI, vol. 14(12), pages 1-14, June.
    19. Istrate, Ioan-Robert & Medina-Martos, Enrique & Galvez-Martos, Jose-Luis & Dufour, Javier, 2021. "Assessment of the energy recovery potential of municipal solid waste under future scenarios," Applied Energy, Elsevier, vol. 293(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1367-:d:509248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.