IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i6p1529-d514305.html
   My bibliography  Save this article

Economic Feasibility of Photovoltaic Micro-Installations Connected to the Brazilian Distribution Grid in Light of Proposed Changes to Regulations

Author

Listed:
  • Gabriel Nasser Doyle de Doile

    (Renewable Energy Graduate Program, Federal University of Paraiba, João Pessoa 58051-900, Brazil)

  • Paulo Rotella Junior

    (Department of Production Engineering, Federal University of Paraiba, João Pessoa 58051-900, Brazil
    Faculty of Finance and Accounting, Prague University of Economics and Business, 13067 Prague, Czech Republic)

  • Priscila França Gonzaga Carneiro

    (Renewable Energy Graduate Program, Federal University of Paraiba, João Pessoa 58051-900, Brazil)

  • Rogério Santana Peruchi

    (Department of Production Engineering, Federal University of Paraiba, João Pessoa 58051-900, Brazil)

  • Luiz Célio Souza Rocha

    (Department of Management, Federal Institute of Education, Science and Technology-North of Minas Gerais, Almenara 39900-000, Brazil)

  • Karel Janda

    (Faculty of Finance and Accounting, Prague University of Economics and Business, 13067 Prague, Czech Republic
    Institute of Economic Studies, Faculty of Social Sciences, Charles University, 11000 Prague, Czech Republic)

  • Giancarlo Aquila

    (Institute of Production and Management Engineering, Federal University of Itajuba, Itajuba 35903-087, Brazil)

Abstract

Brazil is currently undergoing changes to regulations on distributed generation (DG), specifically for solar energy micro-generation. The changes proposed by the Brazilian Regulatory Agency suggest that only the cost of energy be compensated to investors. The service costs and other charges related to energy tariffs must be divided among consumers. Investors with existing installations and class entities have contested these proposals, calling them “sun-fees”. To date, no scientific papers have been published discussing these changes. The new regulations propose an end to cross subsidies, where all consumers (even those who do not have DG) pay for the transmission and distribution systems. This study compares the economic feasibility of micro-generation before and after implementing the new standards proposed by the regulatory agency. We used data on average electrical energy demand, energy price, and solar radiation in different regions. The national averages were used as a base comparison with other scenarios. The results show that projects are viable for all analyzed scenarios, however, after implementing the proposed changes, the discounted payback time is extended. This, however, does not make projects unfeasible.

Suggested Citation

  • Gabriel Nasser Doyle de Doile & Paulo Rotella Junior & Priscila França Gonzaga Carneiro & Rogério Santana Peruchi & Luiz Célio Souza Rocha & Karel Janda & Giancarlo Aquila, 2021. "Economic Feasibility of Photovoltaic Micro-Installations Connected to the Brazilian Distribution Grid in Light of Proposed Changes to Regulations," Energies, MDPI, vol. 14(6), pages 1-14, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1529-:d:514305
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/6/1529/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/6/1529/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rocha, Luiz Célio Souza & Aquila, Giancarlo & Rotela Junior, Paulo & Paiva, Anderson Paulo de & Pamplona, Edson de Oliveira & Balestrassi, Pedro Paulo, 2018. "A stochastic economic viability analysis of residential wind power generation in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 412-419.
    2. Aquila, Giancarlo & Souza Rocha, Luiz Célio & de Oliveira Pamplona, Edson & de Queiroz, Anderson Rodrigo & Rotela Junior, Paulo & Balestrassi, Pedro Paulo & Fonseca, Marcelo Nunes, 2018. "Proposed method for contracting of wind-photovoltaic projects connected to the Brazilian electric system using multiobjective programming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 377-389.
    3. Tao, Jacqueline Yujia & Finenko, Anton, 2016. "Moving beyond LCOE: impact of various financing methods on PV profitability for SIDS," Energy Policy, Elsevier, vol. 98(C), pages 749-758.
    4. Arnold, Uwe & Yildiz, Özgür, 2015. "Economic risk analysis of decentralized renewable energy infrastructures – A Monte Carlo Simulation approach," Renewable Energy, Elsevier, vol. 77(C), pages 227-239.
    5. Aquila, Giancarlo & Rotela Junior, Paulo & de Oliveira Pamplona, Edson & de Queiroz, Anderson Rodrigo, 2017. "Wind power feasibility analysis under uncertainty in the Brazilian electricity market," Energy Economics, Elsevier, vol. 65(C), pages 127-136.
    6. Tudisca, Salvatore & Di Trapani, Anna Maria & Sgroi, Filippo & Testa, Riccardo & Squatrito, Riccardo, 2013. "Economic analysis of PV systems on buildings in Sicilian farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 691-701.
    7. Rodrigues, Sandy & Chen, Xiaoju & Morgado-Dias, F., 2017. "Economic analysis of photovoltaic systems for the residential market under China's new regulation," Energy Policy, Elsevier, vol. 101(C), pages 467-472.
    8. Li, Cun-bin & Lu, Gong-shu & Wu, Si, 2013. "The investment risk analysis of wind power project in China," Renewable Energy, Elsevier, vol. 50(C), pages 481-487.
    9. Walters, Ryan & Walsh, Philip R., 2011. "Examining the financial performance of micro-generation wind projects and the subsidy effect of feed-in tariffs for urban locations in the United Kingdom," Energy Policy, Elsevier, vol. 39(9), pages 5167-5181, September.
    10. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    11. Paulo Rotela Junior & Eugenio Fischetti & Victor G. Araújo & Rogério S. Peruchi & Giancarlo Aquila & Luiz Célio S. Rocha & Liviam S. Lacerda, 2019. "Wind Power Economic Feasibility under Uncertainty and the Application of ANN in Sensitivity Analysis," Energies, MDPI, vol. 12(12), pages 1-10, June.
    12. Dias, César Luiz de Azevedo & Castelo Branco, David Alves & Arouca, Maurício Cardoso & Loureiro Legey, Luiz Fernando, 2017. "Performance estimation of photovoltaic technologies in Brazil," Renewable Energy, Elsevier, vol. 114(PB), pages 367-375.
    13. Пигнастый, Олег & Koжевников, Георгий, 2019. "Распределенная Динамическая Pde-Модель Программного Управления Загрузкой Технологического Оборудования Производственной Линии [Distributed dynamic PDE-model of a program control by utilization of t," MPRA Paper 93278, University Library of Munich, Germany, revised 02 Feb 2019.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gianfranco Chicco & Andrea Mazza & Salvatore Musumeci & Enrico Pons & Angela Russo, 2022. "Editorial for the Special Issue “Verifying the Targets—Selected Papers from the 55th International Universities Power Engineering Conference (UPEC 2020)”," Energies, MDPI, vol. 15(15), pages 1-8, August.
    2. de Doile, Gabriel Nasser Doyle & Rotella Junior, Paulo & Rocha, Luiz Célio Souza & Janda, Karel & Aquila, Giancarlo & Peruchi, Rogério Santana & Balestrassi, Pedro Paulo, 2022. "Feasibility of hybrid wind and photovoltaic distributed generation and battery energy storage systems under techno-economic regulation," Renewable Energy, Elsevier, vol. 195(C), pages 1310-1323.
    3. Gustavo Leite Gonçalves & Raphael Abrahão & Paulo Rotella Junior & Luiz Célio Souza Rocha, 2022. "Economic Feasibility of Conventional and Building-Integrated Photovoltaics Implementation in Brazil," Energies, MDPI, vol. 15(18), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Oliveira, Lucas Guedes & Aquila, Giancarlo & Balestrassi, Pedro Paulo & de Paiva, Anderson Paulo & de Queiroz, Anderson Rodrigo & de Oliveira Pamplona, Edson & Camatta, Ulisses Pessin, 2020. "Evaluating economic feasibility and maximization of social welfare of photovoltaic projects developed for the Brazilian northeastern coast: An attribute agreement analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    2. de Doile, Gabriel Nasser Doyle & Rotella Junior, Paulo & Rocha, Luiz Célio Souza & Janda, Karel & Aquila, Giancarlo & Peruchi, Rogério Santana & Balestrassi, Pedro Paulo, 2022. "Feasibility of hybrid wind and photovoltaic distributed generation and battery energy storage systems under techno-economic regulation," Renewable Energy, Elsevier, vol. 195(C), pages 1310-1323.
    3. Aquila, Giancarlo & Nakamura, Wilson Toshiro & Junior, Paulo Rotella & Souza Rocha, Luiz Celio & de Oliveira Pamplona, Edson, 2021. "Perspectives under uncertainties and risk in wind farms investments based on Omega-LCOE approach: An analysis in São Paulo state, Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    4. Paulo Rotela Junior & Eugenio Fischetti & Victor G. Araújo & Rogério S. Peruchi & Giancarlo Aquila & Luiz Célio S. Rocha & Liviam S. Lacerda, 2019. "Wind Power Economic Feasibility under Uncertainty and the Application of ANN in Sensitivity Analysis," Energies, MDPI, vol. 12(12), pages 1-10, June.
    5. Aquila, Giancarlo & Souza Rocha, Luiz Célio & Rotela Junior, Paulo & Saab Junior, Joseph Youssif & de Sá Brasil Lima, João & Balestrassi, Pedro Paulo, 2020. "Economic planning of wind farms from a NBI-RSM-DEA multiobjective programming," Renewable Energy, Elsevier, vol. 158(C), pages 628-641.
    6. Rocha, Luiz Célio Souza & Aquila, Giancarlo & Rotela Junior, Paulo & Paiva, Anderson Paulo de & Pamplona, Edson de Oliveira & Balestrassi, Pedro Paulo, 2018. "A stochastic economic viability analysis of residential wind power generation in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 412-419.
    7. Aquila, Giancarlo & Rotela Junior, Paulo & de Oliveira Pamplona, Edson & de Queiroz, Anderson Rodrigo, 2017. "Wind power feasibility analysis under uncertainty in the Brazilian electricity market," Energy Economics, Elsevier, vol. 65(C), pages 127-136.
    8. Stetter, Chris & Piel, Jan-Hendrik & Hamann, Julian F.H. & Breitner, Michael H., 2020. "Competitive and risk-adequate auction bids for onshore wind projects in Germany," Energy Economics, Elsevier, vol. 90(C).
    9. Luiz Moreira Coelho Junior & Amadeu Junior da Silva Fonseca & Roberto Castro & João Carlos de Oliveira Mello & Victor Hugo Ribeiro dos Santos & Renato Barros Pinheiro & Wilton Lima Sousa & Edvaldo Per, 2022. "Empirical Evidence of the Cost of Capital under Risk Conditions for Thermoelectric Power Plants in Brazil," Energies, MDPI, vol. 15(12), pages 1-12, June.
    10. Xu Lei & Tang Shiyun & Deng Yanfei & Yuan Yuan, 2020. "Sustainable operation-oriented investment risk evaluation and optimization for renewable energy project: a case study of wind power in China," Annals of Operations Research, Springer, vol. 290(1), pages 223-241, July.
    11. Vale, A.M. & Felix, D.G. & Fortes, M.Z. & Borba, B.S.M.C. & Dias, B.H. & Santelli, B.S., 2017. "Analysis of the economic viability of a photovoltaic generation project applied to the Brazilian housing program “Minha Casa Minha Vida”," Energy Policy, Elsevier, vol. 108(C), pages 292-298.
    12. Aquila, Giancarlo & Coelho, Eden de Oliveira Pinto & Bonatto, Benedito Donizeti & Pamplona, Edson de Oliveira & Nakamura, Wilson Toshiro, 2021. "Perspective of uncertainty and risk from the CVaR-LCOE approach: An analysis of the case of PV microgeneration in Minas Gerais, Brazil," Energy, Elsevier, vol. 226(C).
    13. Carvalho, Diego B. & Pinto, Bárbara L. & Guardia, Eduardo C. & Marangon Lima, José W., 2020. "Economic impact of anticipations or delays in the completion of power generation projects in the Brazilian energy market," Renewable Energy, Elsevier, vol. 147(P1), pages 1312-1320.
    14. Zaroni, Hebert & Maciel, Letícia B. & Carvalho, Diego B. & Pamplona, Edson de O., 2019. "Monte Carlo Simulation approach for economic risk analysis of an emergency energy generation system," Energy, Elsevier, vol. 172(C), pages 498-508.
    15. Gustavo Leite Gonçalves & Raphael Abrahão & Paulo Rotella Junior & Luiz Célio Souza Rocha, 2022. "Economic Feasibility of Conventional and Building-Integrated Photovoltaics Implementation in Brazil," Energies, MDPI, vol. 15(18), pages 1-16, September.
    16. Paulo Rotella Junior & Luiz Célio Souza Rocha & Sandra Naomi Morioka & Ivan Bolis & Gianfranco Chicco & Andrea Mazza & Karel Janda, 2021. "Economic Analysis of the Investments in Battery Energy Storage Systems: Review and Current Perspectives," Energies, MDPI, vol. 14(9), pages 1-29, April.
    17. Aquila, Giancarlo & Souza Rocha, Luiz Célio & de Oliveira Pamplona, Edson & de Queiroz, Anderson Rodrigo & Rotela Junior, Paulo & Balestrassi, Pedro Paulo & Fonseca, Marcelo Nunes, 2018. "Proposed method for contracting of wind-photovoltaic projects connected to the Brazilian electric system using multiobjective programming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 377-389.
    18. Kumar, Indraneel & Tyner, Wallace E. & Labi, Samuel & Sinha, Kumares C., 2021. "“The Answer My Friend is Blowin’ in the Wind”: A stochastic assessment of wind farms financial feasibility and economic efficiency," Energy Policy, Elsevier, vol. 159(C).
    19. Mágui Lage & Rui Castro, 2022. "A Practical Review of the Public Policies Used to Promote the Implementation of PV Technology in Smart Grids: The Case of Portugal," Energies, MDPI, vol. 15(10), pages 1-20, May.
    20. Elisa Alòs & Maria Elvira Mancino & Tai-Ho Wang, 2019. "Volatility and volatility-linked derivatives: estimation, modeling, and pricing," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 321-349, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1529-:d:514305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.