IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i3p567-d485407.html
   My bibliography  Save this article

Equilibrium Pricing with Duality-Based Method: Approach for Market-Oriented Capacity Remuneration Mechanism

Author

Listed:
  • Perica Ilak

    (Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, 10000 Zagreb, Croatia)

  • Lin Herenčić

    (Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, 10000 Zagreb, Croatia)

  • Ivan Rajšl

    (Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, 10000 Zagreb, Croatia)

  • Sara Raos

    (Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, 10000 Zagreb, Croatia)

  • Željko Tomšić

    (Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, 10000 Zagreb, Croatia)

Abstract

The crucial design elements of a good capacity remuneration mechanism are market orientation, insurance of long-term power system adequacy, and optimal cross-border generation capacity utilization. Having in mind these design elements, this research aims to propose a financially fair pricing mechanism that will guarantee enough new capacity and will not present state aid. The proposed capacity remuneration mechanism is an easy-to-implement linear program problem presented in its primal and dual form. The shadow prices in the primal problem and dual variables in the dual problem are used to calculate the prices of firm capacity which is capacity needed for long-term power system adequacy under capacity remuneration mechanism. In order to test if the mechanism ensures sufficient new capacity under fair prices, the mechanism is tested on the European Network of Transmission System Operators for Electricity (ENTSO-E) regional block consisting of Austria, Slovenia, Hungary, and Croatia with simulation conducted for a period of one year with a one-hour resolution and for different scenarios of the credible critical events from a standpoint of security of supply; different amounts of newly installed firm capacity; different short-run marginal costs of newly installed firm capacity; and different capacity factors of newly installed firm capacity. Test data such as electricity prices and electricity load are referred to the year 2018. The results show that the worst-case scenario for Croatia is an isolated system scenario with dry hydrology that results with high values of indicators expected energy not served (EENS), loss of load expectation (LOLE), and loss of load probability (LOLP) for Croatia. Therefore, new capacity of several hundred MW is needed to stabilize these indicators at lower values. Price for that capacity depends on the range of installed firm capacity and should be in range of 1000–7000 €/MW/year for value of lost load (VoLL) in Croatia of 1000 €/MWh and 3000–22,000 €/MW/year for VoLL of 3100 €/MWh that correlates with prices from already established capacity markets. The presented methodology can assist policymakers, regulators, and market operators when determining capacity remuneration mechanism rules and both capacity and price caps. On the other hand, it can help capacity market participants to prepare the most suitable and near-optimal bids on capacity markets.

Suggested Citation

  • Perica Ilak & Lin Herenčić & Ivan Rajšl & Sara Raos & Željko Tomšić, 2021. "Equilibrium Pricing with Duality-Based Method: Approach for Market-Oriented Capacity Remuneration Mechanism," Energies, MDPI, vol. 14(3), pages 1-19, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:567-:d:485407
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/3/567/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/3/567/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Meyer, Roland & Gore, Olga, 2015. "Cross-border effects of capacity mechanisms: Do uncoordinated market design changes contradict the goals of the European market integration?," Energy Economics, Elsevier, vol. 51(C), pages 9-20.
    2. Hary, Nicolas & Rious, Vincent & Saguan, Marcelo, 2016. "The electricity generation adequacy problem: Assessing dynamic effects of capacity remuneration mechanisms," Energy Policy, Elsevier, vol. 91(C), pages 113-127.
    3. Olsina, Fernando & Pringles, Rolando & Larisson, Carlos & Garcés, Francisco, 2014. "Reliability payments to generation capacity in electricity markets," Energy Policy, Elsevier, vol. 73(C), pages 211-224.
    4. Hach, Daniel & Chyong, Chi Kong & Spinler, Stefan, 2016. "Capacity market design options: A dynamic capacity investment model and a GB case study," European Journal of Operational Research, Elsevier, vol. 249(2), pages 691-705.
    5. Gore, Olga & Vanadzina, Evgenia & Viljainen, Satu, 2016. "Linking the energy-only market and the energy-plus-capacity market," Utilities Policy, Elsevier, vol. 38(C), pages 52-61.
    6. Bhagwat, Pradyumna C. & Iychettira, Kaveri K. & Richstein, Jörn C. & Chappin, Emile J.L. & De Vries, Laurens J., 2017. "The effectiveness of capacity markets in the presence of a high portfolio share of renewable energy sources," Utilities Policy, Elsevier, vol. 48(C), pages 76-91.
    7. Ayat-allah Bouramdane & Alexis Tantet & Philippe Drobinski, 2020. "Adequacy of Renewable Energy Mixes with Concentrated Solar Power and Photovoltaic in Morocco: Impact of Thermal Storage and Cost," Energies, MDPI, vol. 13(19), pages 1-34, September.
    8. Keppler, Jan Horst, 2017. "Rationales for capacity remuneration mechanisms: Security of supply externalities and asymmetric investment incentives," Energy Policy, Elsevier, vol. 105(C), pages 562-570.
    9. Gerres, Timo & Chaves Ávila, José Pablo & Martín Martínez, Francisco & Abbad, Michel Rivier & Arín, Rafael Cossent & Sánchez Miralles, Álvaro, 2019. "Rethinking the electricity market design: Remuneration mechanisms to reach high RES shares. Results from a Spanish case study," Energy Policy, Elsevier, vol. 129(C), pages 1320-1330.
    10. Bhagwat, Pradyumna C. & Richstein, Jörn C. & Chappin, Emile J.L. & de Vries, Laurens J., 2016. "The effectiveness of a strategic reserve in the presence of a high portfolio share of renewable energy sources," Utilities Policy, Elsevier, vol. 39(C), pages 13-28.
    11. Newbery, David, 2016. "Missing money and missing markets: Reliability, capacity auctions and interconnectors," Energy Policy, Elsevier, vol. 94(C), pages 401-410.
    12. Ilak, Perica & Rajšl, Ivan & Krajcar, Slavko & Delimar, Marko, 2015. "The impact of a wind variable generation on the hydro generation water shadow price," Applied Energy, Elsevier, vol. 154(C), pages 197-208.
    13. Lin Herenčić & Perica Ilak & Ivan Rajšl, 2019. "Effects of Local Electricity Trading on Power Flows and Voltage Levels for Different Elasticities and Prices," Energies, MDPI, vol. 12(24), pages 1-19, December.
    14. Mastropietro, Paolo & Rodilla, Pablo & Batlle, Carlos, 2015. "National capacity mechanisms in the European internal energy market: Opening the doors to neighbours," Energy Policy, Elsevier, vol. 82(C), pages 38-47.
    15. Perica Ilak & Slavko Krajcar & Ivan Rajšl & Marko Delimar, 2014. "Pricing Energy and Ancillary Services in a Day-Ahead Market for a Price-Taker Hydro Generating Company Using a Risk-Constrained Approach," Energies, MDPI, vol. 7(4), pages 1-26, April.
    16. Željko Tomšić & Sara Raos & Ivan Rajšl & Perica Ilak, 2020. "Role of Electric Vehicles in Transition to Low Carbon Power System—Case Study Croatia," Energies, MDPI, vol. 13(24), pages 1-22, December.
    17. Michael Bucksteeg & Stephan Spiecker & Christoph Weber, 2017. "Impact of Coordinated Capacity Mechanisms on the European Power Market," EWL Working Papers 1701, University of Duisburg-Essen, Chair for Management Science and Energy Economics, revised Jan 2017.
    18. Weiss, Olga & Bogdanov, Dmitry & Salovaara, Kaisa & Honkapuro, Samuli, 2017. "Market designs for a 100% renewable energy system: Case isolated power system of Israel," Energy, Elsevier, vol. 119(C), pages 266-277.
    19. Fan, Lin & Norman, Catherine S. & Patt, Anthony G., 2012. "Electricity capacity investment under risk aversion: A case study of coal, gas, and concentrated solar power," Energy Economics, Elsevier, vol. 34(1), pages 54-61.
    20. Wierzbowski, Michal & Lyzwa, Wojciech & Musial, Izabela, 2016. "MILP model for long-term energy mix planning with consideration of power system reserves," Applied Energy, Elsevier, vol. 169(C), pages 93-111.
    21. Bhagwat, Pradyumna C. & Iychettira, Kaveri K. & Richstein, Jörn C. & Chappin, Emile J.L. & Vries, Laurens J. De, 2017. "The effectiveness of capacity markets in the presence of a high portfolio share of renewable energy sources," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 48, pages 76-91.
    22. Bhagwat, Pradyumna C. & de Vries, Laurens J. & Hobbs, Benjamin F., 2016. "Expert survey on capacity markets in the US: Lessons for the EU," Utilities Policy, Elsevier, vol. 38(C), pages 11-17.
    23. Mastropietro, Paolo & Herrero, Ignacio & Rodilla, Pablo & Batlle, Carlos, 2016. "A model-based analysis on the impact of explicit penalty schemes in capacity mechanisms," Applied Energy, Elsevier, vol. 168(C), pages 406-417.
    24. Guglielmo D’Amico & Giovanni Masala & Filippo Petroni & Robert Adam Sobolewski, 2020. "Managing Wind Power Generation via Indexed Semi-Markov Model and Copula," Energies, MDPI, vol. 13(16), pages 1-21, August.
    25. Tadahiro Taniguchi & Tomohiro Takata & Yoshiro Fukui & Koki Kawasaki, 2015. "Convergent Double Auction Mechanism for a Prosumers’ Decentralized Smart Grid," Energies, MDPI, vol. 8(11), pages 1-20, October.
    26. Bublitz, Andreas & Keles, Dogan & Zimmermann, Florian & Fraunholz, Christoph & Fichtner, Wolf, 2019. "A survey on electricity market design: Insights from theory and real-world implementations of capacity remuneration mechanisms," Energy Economics, Elsevier, vol. 80(C), pages 1059-1078.
    27. Bajo-Buenestado, Raúl, 2017. "Welfare implications of capacity payments in a price-capped electricity sector: A case study of the Texas market (ERCOT)," Energy Economics, Elsevier, vol. 64(C), pages 272-285.
    28. Mastropietro, Paolo & Fontini, Fulvio & Rodilla, Pablo & Batlle, Carlos, 2018. "The Italian capacity remuneration mechanism: Critical review and open questions," Energy Policy, Elsevier, vol. 123(C), pages 659-669.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bublitz, Andreas & Keles, Dogan & Zimmermann, Florian & Fraunholz, Christoph & Fichtner, Wolf, 2019. "A survey on electricity market design: Insights from theory and real-world implementations of capacity remuneration mechanisms," Energy Economics, Elsevier, vol. 80(C), pages 1059-1078.
    2. Bublitz, Andreas & Keles, Dogan & Zimmermann, Florian & Fraunholz, Christoph & Fichtner, Wolf, 2018. "A survey on electricity market design: Insights from theory and real-world implementations of capacity remuneration mechanisms," Working Paper Series in Production and Energy 27, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    3. Bhagwat, Pradyumna C. & Marcheselli, Anna & Richstein, Jörn C. & Chappin, Emile J.L. & De Vries, Laurens J., 2017. "An analysis of a forward capacity market with long-term contracts," Energy Policy, Elsevier, vol. 111(C), pages 255-267.
    4. Khan, Agha Salman M. & Verzijlbergh, Remco A. & Sakinci, Ozgur Can & De Vries, Laurens J., 2018. "How do demand response and electrical energy storage affect (the need for) a capacity market?," Applied Energy, Elsevier, vol. 214(C), pages 39-62.
    5. Simshauser, Paul, 2020. "Merchant renewables and the valuation of peaking plant in energy-only markets," Energy Economics, Elsevier, vol. 91(C).
    6. Simshauser, Paul, 2022. "Rooftop solar PV and the peak load problem in the NEM's Queensland region," Energy Economics, Elsevier, vol. 109(C).
    7. Brito-Pereira, Paulo & Rodilla, Pablo & Mastropietro, Paolo & Batlle, Carlos, 2022. "Self-fulfilling or self-destroying prophecy? The relevance of de-rating factors in modern capacity mechanisms," Applied Energy, Elsevier, vol. 314(C).
    8. Simshauser, P., 2021. "Rooftop Solar PV and the Peak Load Problem in the NEM’s Queensland Region," Cambridge Working Papers in Economics 2180, Faculty of Economics, University of Cambridge.
    9. Bhagwat, Pradyumna C. & Iychettira, Kaveri K. & Richstein, Jörn C. & Chappin, Emile J.L. & De Vries, Laurens J., 2017. "The effectiveness of capacity markets in the presence of a high portfolio share of renewable energy sources," Utilities Policy, Elsevier, vol. 48(C), pages 76-91.
    10. Simshauser, P. & Gilmore, J., 2020. "Is the NEM broken? Policy discontinuity and the 2017-2020 investment megacycle," Cambridge Working Papers in Economics 2048, Faculty of Economics, University of Cambridge.
    11. Kozlova, M. & Overland, I., 2022. "Combining capacity mechanisms and renewable energy support: A review of the international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    12. Bhagwat, Pradyumna C. & Iychettira, Kaveri K. & Richstein, Jörn C. & Chappin, Emile J.L. & Vries, Laurens J. De, 2017. "The effectiveness of capacity markets in the presence of a high portfolio share of renewable energy sources," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 48, pages 76-91.
    13. Cl'emence Alasseur & Heythem Farhat & Marcelo Saguan, 2019. "A Principal-Agent approach to Capacity Remuneration Mechanisms," Papers 1911.12623, arXiv.org, revised Sep 2020.
    14. Höschle, Hanspeter & De Jonghe, Cedric & Le Cadre, Hélène & Belmans, Ronnie, 2017. "Electricity markets for energy, flexibility and availability — Impact of capacity mechanisms on the remuneration of generation technologies," Energy Economics, Elsevier, vol. 66(C), pages 372-383.
    15. Simshauser, Paul & Gilmore, Joel, 2022. "Climate change policy discontinuity & Australia's 2016-2021 renewable investment supercycle," Energy Policy, Elsevier, vol. 160(C).
    16. Bhagwat, Pradyumna C. & Marcheselli, Anna & Richstein, Jörn C. & Chappin, Emile J. L. & Vries, Laurens J. De, 2017. "An analysis of a forward capacity market with long-term contracts," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 111, pages 255-267.
    17. Kraan, Oscar & Kramer, Gert Jan & Nikolic, Igor & Chappin, Emile & Koning, Vinzenz, 2019. "Why fully liberalised electricity markets will fail to meet deep decarbonisation targets even with strong carbon pricing," Energy Policy, Elsevier, vol. 131(C), pages 99-110.
    18. Milstein, Irena & Tishler, Asher, 2019. "On the effects of capacity payments in competitive electricity markets: Capacity adequacy, price cap, and reliability," Energy Policy, Elsevier, vol. 129(C), pages 370-385.
    19. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    20. Mier, Mathias, 2021. "Efficient pricing of electricity revisited," Energy Economics, Elsevier, vol. 104(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:567-:d:485407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.