IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i2p384-d479313.html
   My bibliography  Save this article

Simultaneous Synergy in CH 4 Yield and Kinetics: Criteria for Selecting the Best Mixtures during Co-Digestion of Wastewater and Manure from a Bovine Slaughterhouse

Author

Listed:
  • Zamir Sánchez

    (Grupo de Investigación en Tecnologías de Valorización de Residuos y Fuentes Agrícolas e Industriales para la Sustentabilidad Energética (INTERFASE), Escuela de Ingeniería Química, Universidad Industrial de Santander—UIS, Carrera 27, Calle 9 Ciudad Universitaria, Bucaramanga 680002, Colombia)

  • Davide Poggio

    (Energy 2050, Department of Mechanical Engineering, Faculty of Engineering, University of Sheffield, Sheffield S3 7RD, UK)

  • Liliana Castro

    (Grupo de Investigación en Tecnologías de Valorización de Residuos y Fuentes Agrícolas e Industriales para la Sustentabilidad Energética (INTERFASE), Escuela de Ingeniería Química, Universidad Industrial de Santander—UIS, Carrera 27, Calle 9 Ciudad Universitaria, Bucaramanga 680002, Colombia)

  • Humberto Escalante

    (Grupo de Investigación en Tecnologías de Valorización de Residuos y Fuentes Agrícolas e Industriales para la Sustentabilidad Energética (INTERFASE), Escuela de Ingeniería Química, Universidad Industrial de Santander—UIS, Carrera 27, Calle 9 Ciudad Universitaria, Bucaramanga 680002, Colombia)

Abstract

Usually, slaughterhouse wastewater has been considered as a single substrate whose anaerobic digestion can lead to inhibition problems and low biodegradability. However, the bovine slaughter process generates different wastewater streams with particular physicochemical characteristics: slaughter wastewater (SWW), offal wastewater (OWW) and paunch wastewater (PWW). Therefore, this research aims to assess the anaerobic co-digestion (AcoD) of SWW, OWW, PWW and bovine manure (BM) through biochemical methane potential tests in order to reduce inhibition risk and increase biodegradability. A model-based methodology was developed to assess the synergistic effects considering CH 4 yield and kinetics simultaneously. The AcoD of PWW and BM with OWW and SWW enhanced the extent of degradation (0.64–0.77) above both PWW (0.34) and BM (0.46) mono-digestion. SWW Mono-digestion showed inhibition risk by NH 3 , which was reduced by AcoD with PWW and OWW. The combination of low CH 4 potential streams (PWW and BM) with high potential streams (OWW and SWW) presented stronger synergistic effects than BM-PWW and SWW-OWW mixtures. Likewise, the multicomponent mixtures performed overall better than binary mixtures. Furthermore, the methodology developed allowed to select the best mixtures, which also demonstrated energy and economic advantages compared to mono-digestions.

Suggested Citation

  • Zamir Sánchez & Davide Poggio & Liliana Castro & Humberto Escalante, 2021. "Simultaneous Synergy in CH 4 Yield and Kinetics: Criteria for Selecting the Best Mixtures during Co-Digestion of Wastewater and Manure from a Bovine Slaughterhouse," Energies, MDPI, vol. 14(2), pages 1-22, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:384-:d:479313
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/2/384/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/2/384/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. DeVuyst, Eric A. & Pryor, Scott W. & Lardy, Greg & Eide, Wallace & Wiederholt, Ron, 2011. "Cattle, ethanol, and biogas: Does closing the loop make economic sense?," Agricultural Systems, Elsevier, vol. 104(8), pages 609-614, October.
    2. Shen, Jian & Yan, Hu & Zhang, Ruihong & Liu, Guangqing & Chen, Chang, 2018. "Characterization and methane production of different nut residue wastes in anaerobic digestion," Renewable Energy, Elsevier, vol. 116(PA), pages 835-841.
    3. Jensen, P.D. & Sullivan, T. & Carney, C. & Batstone, D.J., 2014. "Analysis of the potential to recover energy and nutrient resources from cattle slaughterhouses in Australia by employing anaerobic digestion," Applied Energy, Elsevier, vol. 136(C), pages 23-31.
    4. Zheng, Zehui & Liu, Jinhuan & Yuan, Xufeng & Wang, Xiaofen & Zhu, Wanbin & Yang, Fuyu & Cui, Zongjun, 2015. "Effect of dairy manure to switchgrass co-digestion ratio on methane production and the bacterial community in batch anaerobic digestion," Applied Energy, Elsevier, vol. 151(C), pages 249-257.
    5. Kinyua, Maureen N. & Rowse, Laurel E. & Ergas, Sarina J., 2016. "Review of small-scale tubular anaerobic digesters treating livestock waste in the developing world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 896-910.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tariq Alkhrissat & Ghada Kassab & Mu’tasim Abdel-Jaber, 2023. "Impact of Iron Oxide Nanoparticles on Anaerobic Co-Digestion of Cow Manure and Sewage Sludge," Energies, MDPI, vol. 16(15), pages 1-17, August.
    2. Tavera-Ruiz, C. & Martí-Herrero, J. & Mendieta, O. & Jaimes-Estévez, J. & Gauthier-Maradei, P. & Azimov, U. & Escalante, H. & Castro, L., 2023. "Current understanding and perspectives on anaerobic digestion in developing countries: Colombia case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xionghui Gao & Xiaoyu Tang & Kunyang Zhao & Venkatesh Balan & Qili Zhu, 2021. "Biogas Production from Anaerobic Co-Digestion of Spent Mushroom Substrate with Different Livestock Manure," Energies, MDPI, vol. 14(3), pages 1-15, January.
    2. Hynek Roubík & Jana Mazancová & Phung Le Dinh & Dung Dinh Van & Jan Banout, 2018. "Biogas Quality across Small-Scale Biogas Plants: A Case of Central Vietnam," Energies, MDPI, vol. 11(7), pages 1-12, July.
    3. Bacenetti, Jacopo & Sala, Cesare & Fusi, Alessandra & Fiala, Marco, 2016. "Agricultural anaerobic digestion plants: What LCA studies pointed out and what can be done to make them more environmentally sustainable," Applied Energy, Elsevier, vol. 179(C), pages 669-686.
    4. Gaballah, Eid S. & Abdelkader, Tarek Kh & Luo, Shuai & Yuan, Qiaoxia & El-Fatah Abomohra, Abd, 2020. "Enhancement of biogas production by integrated solar heating system: A pilot study using tubular digester," Energy, Elsevier, vol. 193(C).
    5. De Clercq, Djavan & Wen, Zongguo & Caicedo, Luis & Cao, Xin & Fan, Fei & Xu, Ruifei, 2017. "Application of DEA and statistical inference to model the determinants of biomethane production efficiency: A case study in south China," Applied Energy, Elsevier, vol. 205(C), pages 1231-1243.
    6. Roubík, Hynek & Mazancová, Jana & Phung, Le Dinh & Banout, Jan, 2018. "Current approach to manure management for small-scale Southeast Asian farmers - Using Vietnamese biogas and non-biogas farms as an example," Renewable Energy, Elsevier, vol. 115(C), pages 362-370.
    7. Awasthi, Mukesh Kumar & Ferreira, Jorge A. & Sirohi, Ranjna & Sarsaiya, Surendra & Khoshnevisan, Benyamin & Baladi, Samin & Sindhu, Raveendran & Binod, Parameswaran & Pandey, Ashok & Juneja, Ankita & , 2021. "A critical review on the development stage of biorefinery systems towards the management of apple processing-derived waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    8. Francis Kemausuor & Muyiwa S. Adaramola & John Morken, 2018. "A Review of Commercial Biogas Systems and Lessons for Africa," Energies, MDPI, vol. 11(11), pages 1-21, November.
    9. Ruishi Si & Sitong Pan & Yuxin Yuan & Qian Lu & Shuxia Zhang, 2019. "Assessing the Impact of Environmental Regulation on Livestock Manure Waste Recycling: Empirical Evidence from Households in China," Sustainability, MDPI, vol. 11(20), pages 1-17, October.
    10. T. Chen & M. Liu & Y. Takahashi & J.D. Mullen & G.C.W. Ames, 2016. "Carbon emission reduction and cost--benefit of methane digester systems on hog farms in China," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 59(6), pages 948-966, June.
    11. Kainthola, Jyoti & Kalamdhad, Ajay S. & Goud, Vaibhav V., 2020. "Optimization of process parameters for accelerated methane yield from anaerobic co-digestion of rice straw and food waste," Renewable Energy, Elsevier, vol. 149(C), pages 1352-1359.
    12. Li, Pengfei & Cheng, Chongbo & Guo, Rui & Yu, Ran & Jiao, Youzhou & Shen, Dekui & He, Chao, 2022. "Interactions among the components of artificial biomass during their anaerobic digestion with and without sewage sludge," Energy, Elsevier, vol. 261(PB).
    13. Cowley, Cortney & Brorsen, B. Wade & Hamilton, Doug, 2014. "Economic Feasibility of Anaerobic Digesters with Swine Operations," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170621, Agricultural and Applied Economics Association.
    14. Hamawand, Ihsan, 2015. "Anaerobic digestion process and bio-energy in meat industry: A review and a potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 37-51.
    15. De la Rubia, M.A. & Villamil, J.A. & Rodriguez, J.J. & Mohedano, A.F., 2018. "Effect of inoculum source and initial concentration on the anaerobic digestion of the liquid fraction from hydrothermal carbonisation of sewage sludge," Renewable Energy, Elsevier, vol. 127(C), pages 697-704.
    16. Chen, Lihong & Li, Xiaobing & Wen, Wanyu & Jia, Jingdun & Li, Guoqing & Deng, Fei, 2012. "The status, predicament and countermeasures of biomass secondary energy production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6212-6219.
    17. Shamurad, Burhan & Sallis, Paul & Petropoulos, Evangelos & Tabraiz, Shamas & Ospina, Carolina & Leary, Peter & Dolfing, Jan & Gray, Neil, 2020. "Stable biogas production from single-stage anaerobic digestion of food waste," Applied Energy, Elsevier, vol. 263(C).
    18. Li, Demao & Tang, Ruohao & Yu, Liang & Chen, Limei & Chen, Shulin & Xu, Song & Gao, Feng, 2020. "Effects of increasing organic loading rates on reactor performance and the methanogenic community in a new pilot upflow solid reactor for continuously processing food waste," Renewable Energy, Elsevier, vol. 153(C), pages 420-429.
    19. Emebu, Samuel & Pecha, Jiří & Janáčová, Dagmar, 2022. "Review on anaerobic digestion models: Model classification & elaboration of process phenomena," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    20. Małgorzata Fugol & Hubert Prask & Józef Szlachta & Arkadiusz Dyjakon & Marta Pasławska & Szymon Szufa, 2023. "Improving the Energetic Efficiency of Biogas Plants Using Enzymatic Additives to Anaerobic Digestion," Energies, MDPI, vol. 16(4), pages 1-12, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:384-:d:479313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.