IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p7912-d687639.html
   My bibliography  Save this article

Optimal N Application Rates on Switchgrass for Producers and a Biorefinery

Author

Listed:
  • Keven Alan Robertson

    (Pilot Flying J, Corporate Office, Knoxville, TN 37996, USA)

  • Burton C. English

    (Department of Agricultural and Resource Economics, The University of Tennessee, Knoxville, TN 37996, USA)

  • Christopher D. Clark

    (Department of Agricultural and Resource Economics, The University of Tennessee, Knoxville, TN 37996, USA)

  • Jada M. Thompson

    (Department of Agricultural and Resource Economics, The University of Tennessee, Knoxville, TN 37996, USA)

  • Kimberly L. Jensen

    (Department of Agricultural and Resource Economics, The University of Tennessee, Knoxville, TN 37996, USA)

  • Robert Jamey Menard

    (Department of Agricultural and Resource Economics, The University of Tennessee, Knoxville, TN 37996, USA)

  • Nicole Labbé

    (Center for Renewable Carbon, University of Tennessee, Knoxville, TN 37996, USA)

Abstract

This study analyzes the effects of N fertilizer application rates on profitability of growing switchgrass and using the feedstock in a pyrolysis biorefinery facility to create a source of sustainable aviation fuel (SAF) supply in Tennessee. Switchgrass ( Panicum virgatum L.) is a perennial bunchgrass native to North America with traits suitable for biofuel and co-product production. Previous chemical analysis has shown that ash content in switchgrass is related to the amount of nitrogen applied to the field, while at the biorefinery level, the percentage ash content reduces the biorefinery fuel output. To obtain optimal nitrogen ( N ) application rates for the switchgrass producers and the biorefinery, a two-part analysis is employed. First, a partial budgeting profitability analysis is conducted for this cropping enterprise at the farm-gate level without considering downstream implications of biomass quality, i.e., ash content. Second, the effects of higher ash content as a percentage of the feedstock on biorefinery output are analyzed. Results show farm-gate profit is maximized when N fertilizer is applied at 111 kg/ha, while as a result of increased production levels and decreased percentage ash content, biorefinery profit is maximized when N is applied at 157 kg/ha. Lower ash could lead to premium prices paid to switchgrass producers if higher quality feedstock were to be demanded as part of an integrated biofuel industry.

Suggested Citation

  • Keven Alan Robertson & Burton C. English & Christopher D. Clark & Jada M. Thompson & Kimberly L. Jensen & Robert Jamey Menard & Nicole Labbé, 2021. "Optimal N Application Rates on Switchgrass for Producers and a Biorefinery," Energies, MDPI, vol. 14(23), pages 1-13, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:7912-:d:687639
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/7912/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/7912/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yılmaz, Semih & Kumlutaş, Dilek & Yücekaya, Utku Alp & Cumbul, Ahmet Yakup, 2021. "Prediction of the equilibrium compositions in the combustion products of a domestic boiler," Energy, Elsevier, vol. 233(C).
    2. Zhong, Jia & Yu, T. Edward & Clark, Christopher D. & English, Burton C. & Larson, James A. & Cheng, Chu-Lin, 2018. "Effect of land use change for bioenergy production on feedstock cost and water quality," Applied Energy, Elsevier, vol. 210(C), pages 580-590.
    3. Zhong, Jia & Yu, T. Edward & Larson, James A. & English, Burton C. & Fu, Joshua S. & Calcagno, James, 2016. "Analysis of environmental and economic tradeoffs in switchgrass supply chains for biofuel production," Energy, Elsevier, vol. 107(C), pages 791-803.
    4. Mahmoudan, Alireza & Samadof, Parviz & Hosseinzadeh, Siamak & Garcia, Davide Astiaso, 2021. "A multigeneration cascade system using ground-source energy with cold recovery: 3E analyses and multi-objective optimization," Energy, Elsevier, vol. 233(C).
    5. Li, Xian & Chen, Jialing & Sun, Xiangyu & Zhao, Yao & Chong, Clive & Dai, Yanjun & Wang, Chi-Hwa, 2021. "Multi-criteria decision making of biomass gasification-based cogeneration systems with heat storage and solid dehumidification of desiccant coated heat exchangers," Energy, Elsevier, vol. 233(C).
    6. Faaij, Andre P.C., 2006. "Bio-energy in Europe: changing technology choices," Energy Policy, Elsevier, vol. 34(3), pages 322-342, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Danilo Arcentales-Bastidas & Carla Silva & Angel D. Ramirez, 2022. "The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex," Energies, MDPI, vol. 15(15), pages 1-24, July.
    2. Gasol, Carles M. & Martínez, Sergio & Rigola, Miquel & Rieradevall, Joan & Anton, Assumpció & Carrasco, Juan & Ciria, Pilar & Gabarrell, Xavier, 2009. "Feasibility assessment of poplar bioenergy systems in the Southern Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 801-812, May.
    3. Wen, Shaoting & Buyukada, Musa & Evrendilek, Fatih & Liu, Jingyong, 2020. "Uncertainty and sensitivity analyses of co-combustion/pyrolysis of textile dyeing sludge and incense sticks: Regression and machine-learning models," Renewable Energy, Elsevier, vol. 151(C), pages 463-474.
    4. Nasrin Aghamohammadi & Stacy Simai Reginald & Ahmad Shamiri & Ali Akbar Zinatizadeh & Li Ping Wong & Nik Meriam Binti Nik Sulaiman, 2016. "An Investigation of Sustainable Power Generation from Oil Palm Biomass: A Case Study in Sarawak," Sustainability, MDPI, vol. 8(5), pages 1-19, April.
    5. Escudero, Marcos & Jiménez, Ángel & González, Celina & López, Ignacio, 2013. "Quantitative analysis of potential power production and environmental benefits of Biomass Integrated Gasification Combined Cycles in the European Union," Energy Policy, Elsevier, vol. 53(C), pages 63-75.
    6. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    7. Matteo De Besi & Kes McCormick, 2015. "Towards a Bioeconomy in Europe: National, Regional and Industrial Strategies," Sustainability, MDPI, vol. 7(8), pages 1-18, August.
    8. Petrelli, Marina & Fioriti, Davide & Berizzi, Alberto & Bovo, Cristian & Poli, Davide, 2021. "A novel multi-objective method with online Pareto pruning for multi-year optimization of rural microgrids," Applied Energy, Elsevier, vol. 299(C).
    9. Mirjana Golušin & Olja Munitlak Ivanovic & Simonida Vucenov, 2012. "Sustainable energy management - a prerequisite for the realization Kyoto Protocol," Journal of Economic Development, Environment and People, Alliance of Central-Eastern European Universities, vol. 1(2), pages 24-34, September.
    10. Ovando, Paola & Caparrós, Alejandro, 2009. "Land use and carbon mitigation in Europe: A survey of the potentials of different alternatives," Energy Policy, Elsevier, vol. 37(3), pages 992-1003, March.
    11. Van de Velden, Manon & Baeyens, Jan & Brems, Anke & Janssens, Bart & Dewil, Raf, 2010. "Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction," Renewable Energy, Elsevier, vol. 35(1), pages 232-242.
    12. Dornburg, Veronika & Faaij, André P.C., 2006. "Optimising waste treatment systems," Resources, Conservation & Recycling, Elsevier, vol. 48(3), pages 227-248.
    13. Ge, Jiaqi & Sutherland, Lee-Ann & Polhill, J. Gary & Matthews, Keith & Miller, Dave & Wardell-Johnson, Douglas, 2017. "Exploring factors affecting on-farm renewable energy adoption in Scotland using large-scale microdata," Energy Policy, Elsevier, vol. 107(C), pages 548-560.
    14. Luis Puigjaner & Mar Pérez-Fortes & José M. Laínez-Aguirre, 2015. "Towards a Carbon-Neutral Energy Sector: Opportunities and Challenges of Coordinated Bioenergy Supply Chains-A PSE Approach," Energies, MDPI, vol. 8(6), pages 1-48, June.
    15. Wee, Hui-Ming & Yang, Wen-Hsiung & Chou, Chao-Wu & Padilan, Marivic V., 2012. "Renewable energy supply chains, performance, application barriers, and strategies for further development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5451-5465.
    16. Farajiamiri, Mina & Meyer, Jörn-Christian & Walther, Grit, 2023. "Multi-objective optimization of renewable fuel supply chains regarding cost, land use, and water use," Applied Energy, Elsevier, vol. 349(C).
    17. Sérgio Ferreira & Eliseu Monteiro & Paulo Brito & Cândida Vilarinho, 2019. "A Holistic Review on Biomass Gasification Modified Equilibrium Models," Energies, MDPI, vol. 12(1), pages 1-31, January.
    18. Tosun, Jale & Solorio, Israel, 2011. "Exploring the Energy-Environment Relationship in the EU: Perspectives and Challenges for Theorizing and Empirical Analysis," European Integration online Papers (EIoP), European Community Studies Association Austria (ECSA-A), vol. 15, November.
    19. Victor Platon & Simona Frone & Andreea Constantinescu & Sorina Jurist, 2010. "Current Perspectives and Challenges of Biofuel Production and Consumption," Romanian Journal of Economics, Institute of National Economy, vol. 31(2(40)), pages 107-128, December.
    20. Bhagwat, Pradyumna C. & Marcheselli, Anna & Richstein, Jörn C. & Chappin, Emile J.L. & De Vries, Laurens J., 2017. "An analysis of a forward capacity market with long-term contracts," Energy Policy, Elsevier, vol. 111(C), pages 255-267.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:7912-:d:687639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.