IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p7861-d686307.html
   My bibliography  Save this article

Thermodynamic Insight in Design of Methanation Reactor with Water Removal Considering Nexus between CO 2 Conversion and Irreversibilities

Author

Listed:
  • Sayed Ebrahim Hashemi

    (Department of Energy and Process Technology, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway)

  • Kristian M. Lien

    (Department of Energy and Process Technology, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway)

  • Magne Hillestad

    (Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway)

  • Sondre K. Schnell

    (Department of Material Science and Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway)

  • Bjørn Austbø

    (Department of Energy and Process Technology, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway)

Abstract

The inevitable nexus between energy use and CO 2 emission necessitates the development of sustainable energy systems. The conversion of CO 2 to CH 4 using green H 2 in power-to-gas applications in such energy systems has attracted much interest. In this context, the present study provides a thermodynamic insight into the effect of water removal on CO 2 conversion and irreversibility within a CO 2 methanation reactor. A fixed-bed reactor with one intermediate water removal point, representing two reactors in series, was modeled by a one-dimensional pseudo-homogeneous model. Pure CO 2 or a mixture of CO 2 and methane, representing a typical biogas mixture, were used as feed. For short reactors, both the maximum conversion and the largest irreversibilities were observed when the water removal point was located in the middle of the reactor. However, as the length of the reactor increased, the water removal point with the highest conversion was shifted towards the end of the reactor, accompanied by a smaller thermodynamic penalty. The largest irreversibilities in long reactors were obtained when water removal took place closer to the inlet of the reactor. The study discusses the potential benefit of partial water removal and reactant feeding for energy-efficient reactor design.

Suggested Citation

  • Sayed Ebrahim Hashemi & Kristian M. Lien & Magne Hillestad & Sondre K. Schnell & Bjørn Austbø, 2021. "Thermodynamic Insight in Design of Methanation Reactor with Water Removal Considering Nexus between CO 2 Conversion and Irreversibilities," Energies, MDPI, vol. 14(23), pages 1-21, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:7861-:d:686307
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/7861/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/7861/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pao, Hsiao-Tien & Tsai, Chung-Ming, 2010. "CO2 emissions, energy consumption and economic growth in BRIC countries," Energy Policy, Elsevier, vol. 38(12), pages 7850-7860, December.
    2. Ghaib, Karim & Ben-Fares, Fatima-Zahrae, 2018. "Power-to-Methane: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 433-446.
    3. Gallo, A.B. & Simões-Moreira, J.R. & Costa, H.K.M. & Santos, M.M. & Moutinho dos Santos, E., 2016. "Energy storage in the energy transition context: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 800-822.
    4. Balsalobre-Lorente, Daniel & Shahbaz, Muhammad & Roubaud, David & Farhani, Sahbi, 2018. "How economic growth, renewable electricity and natural resources contribute to CO2 emissions?," Energy Policy, Elsevier, vol. 113(C), pages 356-367.
    5. Sinsel, Simon R. & Riemke, Rhea L. & Hoffmann, Volker H., 2020. "Challenges and solution technologies for the integration of variable renewable energy sources—a review," Renewable Energy, Elsevier, vol. 145(C), pages 2271-2285.
    6. Lefebvre, Jonathan & Bajohr, Siegfried & Kolb, Thomas, 2020. "Modeling of the transient behavior of a slurry bubble column reactor for CO2 methanation, and comparison with a tube bundle reactor," Renewable Energy, Elsevier, vol. 151(C), pages 118-136.
    7. Mazza, Andrea & Bompard, Ettore & Chicco, Gianfranco, 2018. "Applications of power to gas technologies in emerging electrical systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 794-806.
    8. Uebbing, Jennifer & Rihko-Struckmann, Liisa K. & Sundmacher, Kai, 2019. "Exergetic assessment of CO2 methanation processes for the chemical storage of renewable energies," Applied Energy, Elsevier, vol. 233, pages 271-282.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Victor Soto & Claudia Ulloa & Ximena Garcia, 2022. "A 3D Transient CFD Simulation of a Multi-Tubular Reactor for Power to Gas Applications," Energies, MDPI, vol. 15(9), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Inkeri, Eero & Tynjälä, Tero & Karjunen, Hannu, 2021. "Significance of methanation reactor dynamics on the annual efficiency of power-to-gas -system," Renewable Energy, Elsevier, vol. 163(C), pages 1113-1126.
    2. Sara Bellocchi & Michele Manno & Michel Noussan & Michela Vellini, 2019. "Impact of Grid-Scale Electricity Storage and Electric Vehicles on Renewable Energy Penetration: A Case Study for Italy," Energies, MDPI, vol. 12(7), pages 1-32, April.
    3. Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.
    4. Mehmet Balcilar & Zeynel Abidin Ozdemir & Huseyin Ozdemir & Muhammad Shahbaz, 2018. "Carbon dioxide emissions, energy consumption and economic growth: The historical decomposition evidence from G-7 countries," Working Papers 15-41, Eastern Mediterranean University, Department of Economics.
    5. Muhammad Zeeshan & Jiabin Han & Alam Rehman & Hazrat Bilal & Naveed Farooq & Muhammad Waseem & Arif Hussain & Muhammad Khan & Ilyas Ahmad, 2021. "Nexus between Foreign Direct Investment, Energy Consumption, Natural Resource, and Economic Growth in Latin American Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 11(1), pages 407-416.
    6. Sun, Yunpeng & Guan, Weimin & Mehmood, Usman & Yang, Xiaodong, 2022. "Asymmetric impacts of natural resources on ecological footprints: Exploring the role of economic growth, FDI and renewable energy in G-11 countries," Resources Policy, Elsevier, vol. 79(C).
    7. Zoltán Csedő & Botond Sinóros-Szabó & Máté Zavarkó, 2020. "Seasonal Energy Storage Potential Assessment of WWTPs with Power-to-Methane Technology," Energies, MDPI, vol. 13(18), pages 1-21, September.
    8. Wei, Zixiang & Han, Botang & Pan, Xiuzhen & Shahbaz, Muhammad & Zafar, Muhammad Wasif, 2020. "Effects of diversified openness channels on the total-factor energy efficiency in China's manufacturing sub-sectors: Evidence from trade and FDI spillovers," Energy Economics, Elsevier, vol. 90(C).
    9. Renda, Simona & Ricca, Antonio & Palma, Vincenzo, 2020. "Precursor salts influence in Ruthenium catalysts for CO2 hydrogenation to methane," Applied Energy, Elsevier, vol. 279(C).
    10. Liu Sicen & Anwar Khan & Allauddin Kakar, 2022. "The Role of Disaggregated Level Natural Resources Rents in Economic Growth and Environmental Degradation of BRICS Economies," Biophysical Economics and Resource Quality, Springer, vol. 7(3), pages 1-14, September.
    11. Ni, Xiewen & Wang, Zanxin & Akbar, Ahsan & Ali, Sher, 2022. "Natural resources volatility, renewable energy, R&D resources and environment: Evidence from selected developed countries," Resources Policy, Elsevier, vol. 77(C).
    12. Dogan, Eyup & Altinoz, Buket & Madaleno, Mara & Taskin, Dilvin, 2020. "The impact of renewable energy consumption to economic growth: A replication and extension of Inglesi-Lotz (2016)," Energy Economics, Elsevier, vol. 90(C).
    13. Muhammad Kamran Khan & Muhammad Imran Khan & Muhammad Rehan, 2020. "The relationship between energy consumption, economic growth and carbon dioxide emissions in Pakistan," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-13, December.
    14. Jiang-Long Liu & Chao-Qun Ma & Yi-Shuai Ren & Xin-Wei Zhao, 2020. "Do Real Output and Renewable Energy Consumption Affect CO 2 Emissions? Evidence for Selected BRICS Countries," Energies, MDPI, vol. 13(4), pages 1-18, February.
    15. Wentrup, Jonas & Pesch, Georg R. & Thöming, Jorg, 2022. "Dynamic operation of Fischer-Tropsch reactors for power-to-liquid concepts: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    16. Daniel Balsalobre‐Lorente & Oana M. Driha & George Halkos & Shekhar Mishra, 2022. "Influence of growth and urbanization on CO2 emissions: The moderating effect of foreign direct investment on energy use in BRICS," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(1), pages 227-240, February.
    17. Abdullah Emre Caglar & Bulent Guloglu & Ayfer Gedikli, 2022. "Moving towards sustainable environmental development for BRICS: Investigating the asymmetric effect of natural resources on CO2," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(5), pages 1313-1325, October.
    18. Diana Enescu & Gianfranco Chicco & Radu Porumb & George Seritan, 2020. "Thermal Energy Storage for Grid Applications: Current Status and Emerging Trends," Energies, MDPI, vol. 13(2), pages 1-21, January.
    19. Blanco, Elena C. & Sánchez, Antonio & Martín, Mariano & Vega, Pastora, 2023. "Methanol and ammonia as emerging green fuels: Evaluation of a new power generation paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    20. Bano, Sadia & Liu, Lu & Khan, Anwar, 2022. "Dynamic influence of aging, industrial innovations, and ICT on tourism development and renewable energy consumption in BRICS economies," Renewable Energy, Elsevier, vol. 192(C), pages 431-442.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:7861-:d:686307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.