IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7306-d671783.html
   My bibliography  Save this article

Polyolefins and Polyethylene Terephthalate Package Wastes: Recycling and Use in Composites

Author

Listed:
  • Hannah Jones

    (Institute for Materials and Processes, School of Engineering, The University of Edinburgh, Sanderson Building, Robert Stevenson Road, Edinburgh EH9-3FB, UK)

  • Florence Saffar

    (DMAS, ONERA, Université Paris-Saclay, F-92322 Châtillon, France)

  • Vasileios Koutsos

    (Institute for Materials and Processes, School of Engineering, The University of Edinburgh, Sanderson Building, Robert Stevenson Road, Edinburgh EH9-3FB, UK)

  • Dipa Ray

    (Institute for Materials and Processes, School of Engineering, The University of Edinburgh, Sanderson Building, Robert Stevenson Road, Edinburgh EH9-3FB, UK)

Abstract

Plastics are versatile materials used in a variety of sectors that have seen a rapid increase in their global production. Millions of tonnes of plastic wastes are generated each year, which puts pressure on plastic waste management methods to prevent their accumulation within the environment. Recycling is an attractive disposal method and aids the initiative of a circular plastic economy, but recycling still has challenges to overcome. This review starts with an overview of the current European recycling strategies for solid plastic waste and the challenges faced. Emphasis lies on the recycling of polyolefins (POs) and polyethylene terephthalate (PET) which are found in plastic packaging, as packaging contributes a signification proportion to solid plastic wastes. Both sections, the recycling of POs and PET, discuss the sources of wastes, chemical and mechanical recycling, effects of recycling on the material properties, strategies to improve the performance of recycled POs and PET, and finally the applications of recycled POs and PET. The review concludes with a discussion of the future potential and opportunities of recycled POs and PET.

Suggested Citation

  • Hannah Jones & Florence Saffar & Vasileios Koutsos & Dipa Ray, 2021. "Polyolefins and Polyethylene Terephthalate Package Wastes: Recycling and Use in Composites," Energies, MDPI, vol. 14(21), pages 1-43, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7306-:d:671783
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7306/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7306/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bujak, Janusz Wojciech, 2015. "Thermal utilization (treatment) of plastic waste," Energy, Elsevier, vol. 90(P2), pages 1468-1477.
    2. Makarichi, Luke & Jutidamrongphan, Warangkana & Techato, Kua-anan, 2018. "The evolution of waste-to-energy incineration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 812-821.
    3. Park, Ki-Bum & Jeong, Yong-Seong & Guzelciftci, Begum & Kim, Joo-Sik, 2019. "Characteristics of a new type continuous two-stage pyrolysis of waste polyethylene," Energy, Elsevier, vol. 166(C), pages 343-351.
    4. Altaf Hussain Kanhar & Shaoqing Chen & Fei Wang, 2020. "Incineration Fly Ash and Its Treatment to Possible Utilization: A Review," Energies, MDPI, vol. 13(24), pages 1-35, December.
    5. Singh, P. & Déparrois, N. & Burra, K.G. & Bhattacharya, S. & Gupta, A.K., 2019. "Energy recovery from cross-linked polyethylene wastes using pyrolysis and CO2 assisted gasification," Applied Energy, Elsevier, vol. 254(C).
    6. Luijsterburg, Benny & Goossens, Han, 2014. "Assessment of plastic packaging waste: Material origin, methods, properties," Resources, Conservation & Recycling, Elsevier, vol. 85(C), pages 88-97.
    7. Welle, Frank, 2011. "Twenty years of PET bottle to bottle recycling—An overview," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 865-875.
    8. Winans, K. & Kendall, A. & Deng, H., 2017. "The history and current applications of the circular economy concept," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 825-833.
    9. V. Tournier & C. M. Topham & A. Gilles & B. David & C. Folgoas & E. Moya-Leclair & E. Kamionka & M.-L. Desrousseaux & H. Texier & S. Gavalda & M. Cot & E. Guémard & M. Dalibey & J. Nomme & G. Cioci & , 2020. "An engineered PET depolymerase to break down and recycle plastic bottles," Nature, Nature, vol. 580(7802), pages 216-219, April.
    10. Joe Yates & Megan Deeney & Howard White & Edward Joy & Sofia Kalamatianou & Suneetha Kadiyala, 2019. "PROTOCOL: Plastics in the food system: Human health, economic and environmental impacts. A scoping review," Campbell Systematic Reviews, John Wiley & Sons, vol. 15(1-2), June.
    11. Lopez, Gartzen & Artetxe, Maite & Amutio, Maider & Bilbao, Javier & Olazar, Martin, 2017. "Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 346-368.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Jijiang & Veksha, Andrei & Chan, Wei Ping & Giannis, Apostolos & Lisak, Grzegorz, 2022. "Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Park, Ki-Bum & Jeong, Yong-Seong & Kim, Joo-Sik, 2019. "Activator-assisted pyrolysis of polypropylene," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    3. Park, Ki-Bum & Jeong, Yong-Seong & Guzelciftci, Begum & Kim, Joo-Sik, 2020. "Two-stage pyrolysis of polystyrene: Pyrolysis oil as a source of fuels or benzene, toluene, ethylbenzene, and xylenes," Applied Energy, Elsevier, vol. 259(C).
    4. Jeong, Yong-Seong & Park, Ki-Bum & Kim, Joo-Sik, 2022. "Kinetics and characteristics of activator-assisted pyrolysis of municipal waste plastic and chlorine removal using hot filter filled with absorbents," Energy, Elsevier, vol. 238(PB).
    5. John A. Mathews, 2020. "Schumpeterian economic dynamics of greening: propagation of green eco-platforms," Journal of Evolutionary Economics, Springer, vol. 30(4), pages 929-948, September.
    6. Chhabra, Vibhuti & Bambery, Keith & Bhattacharya, Sankar & Shastri, Yogendra, 2020. "Thermal and in situ infrared analysis to characterise the slow pyrolysis of mixed municipal solid waste (MSW) and its components," Renewable Energy, Elsevier, vol. 148(C), pages 388-401.
    7. Zhao, Xinyue & Chen, Heng & Zheng, Qiwei & Liu, Jun & Pan, Peiyuan & Xu, Gang & Zhao, Qinxin & Jiang, Xue, 2023. "Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission," Energy, Elsevier, vol. 265(C).
    8. Yuantao Peng & Jie Yang & Chenqiang Deng & Jin Deng & Li Shen & Yao Fu, 2023. "Acetolysis of waste polyethylene terephthalate for upcycling and life-cycle assessment study," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Amit Kumar Jaglan & Venkata Ravi Sankar Cheela & Mansi Vinaik & Brajesh Dubey, 2022. "Environmental Impact Evaluation of University Integrated Waste Management System in India Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
    10. D'Adamo, Idiano & Mammetti, Marco & Ottaviani, Dario & Ozturk, Ilhan, 2023. "Photovoltaic systems and sustainable communities: New social models for ecological transition. The impact of incentive policies in profitability analyses," Renewable Energy, Elsevier, vol. 202(C), pages 1291-1304.
    11. Mochamad Arief Budihardjo & Natasya Ghinna Humaira & Soraya Annisa Putri & Bimastyaji Surya Ramadan & Syafrudin Syafrudin & Eflita Yohana, 2021. "Sustainable Solid Waste Management Strategies for Higher Education Institutions: Diponegoro University, Indonesia Case Study," Sustainability, MDPI, vol. 13(23), pages 1-15, November.
    12. Halkos, George & Aslanidis, Panagiotis-Stavros, 2024. "Reviewing environmental aspects under the scope of ESG," MPRA Paper 120298, University Library of Munich, Germany.
    13. Thobile Zikhathile & Harrison Atagana & Joseph Bwapwa & David Sawtell, 2022. "A Review of the Impact That Healthcare Risk Waste Treatment Technologies Have on the Environment," IJERPH, MDPI, vol. 19(19), pages 1-18, September.
    14. Chenyu Lu & Yang Zhang & Hengji Li & Zilong Zhang & Wei Cheng & Shulei Jin & Wei Liu, 2020. "An Integrated Measurement of the Efficiency of China’s Industrial Circular Economy and Associated Influencing Factors," Mathematics, MDPI, vol. 8(9), pages 1-21, September.
    15. Venkata Ravi Sankar Cheela & Michele John & Wahidul K. Biswas & Brajesh Dubey, 2021. "Environmental Impact Evaluation of Current Municipal Solid Waste Treatments in India Using Life Cycle Assessment," Energies, MDPI, vol. 14(11), pages 1-23, May.
    16. Castro-Lopez, Adrian & Iglesias, Victor & Santos-Vijande, María Leticia, 2023. "Organizational capabilities and institutional pressures in the adoption of circular economy," Journal of Business Research, Elsevier, vol. 161(C).
    17. Fan, Liangliang & Liu, Lei & Xiao, Zhiguo & Su, Zheyang & Huang, Pei & Peng, Hongyu & Lv, Sen & Jiang, Haiwei & Ruan, Roger & Chen, Paul & Zhou, Wenguang, 2021. "Comparative study of continuous-stirred and batch microwave pyrolysis of linear low-density polyethylene in the presence/absence of HZSM-5," Energy, Elsevier, vol. 228(C).
    18. Anna Matuszewska & Adam Hańderek & Maciej Paczuski & Krzysztof Biernat, 2021. "Hydrocarbon Fractions from Thermolysis of Waste Plastics as Components of Engine Fuels," Energies, MDPI, vol. 14(21), pages 1-14, November.
    19. Anika Reetsch & Kai Schwärzel & Christina Dornack & Shadrack Stephene & Karl-Heinz Feger, 2020. "Optimising Nutrient Cycles to Improve Food Security in Smallholder Farming Families—A Case Study from Banana-Coffee-Based Farming in the Kagera Region, NW Tanzania," Sustainability, MDPI, vol. 12(21), pages 1-34, November.
    20. Luís Carmo-Calado & Manuel Jesús Hermoso-Orzáez & Roberta Mota-Panizio & Bruno Guilherme-Garcia & Paulo Brito, 2020. "Co-Combustion of Waste Tires and Plastic-Rubber Wastes with Biomass Technical and Environmental Analysis," Sustainability, MDPI, vol. 12(3), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7306-:d:671783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.