IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6301-d648992.html
   My bibliography  Save this article

Feasibility Study on Bioethanol Production by One Phase Transition Separation Based on Advanced Solid-State Fermentation

Author

Listed:
  • Hongshen Li

    (Institute of New Energy Technology, Tsinghua University, Beijing 100084, China
    Beijing Engineering Research Center for Biofuels, Beijing 100084, China)

  • Hongrui Liu

    (Institute of New Energy Technology, Tsinghua University, Beijing 100084, China
    Beijing Engineering Research Center for Biofuels, Beijing 100084, China)

  • Shizhong Li

    (Institute of New Energy Technology, Tsinghua University, Beijing 100084, China
    Beijing Engineering Research Center for Biofuels, Beijing 100084, China)

Abstract

To fulfill the consumption demand of low-cost fuel ethanol, an advanced process for feedstock fermentation and bioethanol extraction was required. This study proposed a process of combined continuous solid-state distillation and vapor permeation to extract ethanol from fermented sweet sorghum bagasse on the basis of advanced solid-state fermentation technology. Ethanol undergoes only one phase transition separation in the whole process, which drastically reduces energy consumption compared to the repeating phase transitions that occur in conventional bioethanol production. The mass balance and energy consumption of combining processes were simulated overall. A techno-economic evaluation was conducted on the flowsheet. Costs and profit of fuel ethanol produced by one phase transition separation bioethanol-producing technology were comprehensively calculated. The results of the present study show that the proposed process is an energy efficient and cost-effective alternative to conventional bioethanol production.

Suggested Citation

  • Hongshen Li & Hongrui Liu & Shizhong Li, 2021. "Feasibility Study on Bioethanol Production by One Phase Transition Separation Based on Advanced Solid-State Fermentation," Energies, MDPI, vol. 14(19), pages 1-14, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6301-:d:648992
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6301/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6301/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jansson, Christer & Westerbergh, Anna & Zhang, Jiaming & Hu, Xinwen & Sun, Chuanxin, 2009. "Cassava, a potential biofuel crop in (the) People's Republic of China," Applied Energy, Elsevier, vol. 86(Supplemen), pages 95-99, November.
    2. Hongshen Li & Shizhong Li, 2020. "Optimization of Continuous Solid-State Distillation Process for Cost-Effective Bioethanol Production," Energies, MDPI, vol. 13(4), pages 1-21, February.
    3. Xiaolin Yang & Meng Li & Huihui Liu & Lantian Ren & Guanghui Xie, 2018. "Technical Feasibility and Comprehensive Sustainability Assessment of Sweet Sorghum for Bioethanol Production in China," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    4. Hongshen Li & Hongrui Liu & Yufang Li & Jilin Nan & Chen Shi & Shizhong Li, 2021. "Combined Vapor Permeation and Continuous Solid-State Distillation for Energy-Efficient Bioethanol Production," Energies, MDPI, vol. 14(8), pages 1-15, April.
    5. Li, Shizhong & Li, Guangming & Zhang, Lei & Zhou, Zhixing & Han, Bing & Hou, Wenhui & Wang, Jingbing & Li, Tiancheng, 2013. "A demonstration study of ethanol production from sweet sorghum stems with advanced solid state fermentation technology," Applied Energy, Elsevier, vol. 102(C), pages 260-265.
    6. Niphaphat Phukoetphim & Pachaya Chan-u-tit & Pattana Laopaiboon & Lakkana Laopaiboon, 2019. "Improvement of Bioethanol Production from Sweet Sorghum Juice under Very High Gravity Fermentation: Effect of Nitrogen, Osmoprotectant, and Aeration," Energies, MDPI, vol. 12(19), pages 1-13, September.
    7. Khalid, Azqa & Aslam, Muhammad & Qyyum, Muhammad Abdul & Faisal, Abrar & Khan, Asim Laeeq & Ahmed, Faisal & Lee, Moonyong & Kim, Jeonghwan & Jang, Nulee & Chang, In Seop & Bazmi, Aqeel Ahmed & Yasin, , 2019. "Membrane separation processes for dehydration of bioethanol from fermentation broths: Recent developments, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 427-443.
    8. Zabed, H. & Sahu, J.N. & Suely, A. & Boyce, A.N. & Faruq, G., 2017. "Bioethanol production from renewable sources: Current perspectives and technological progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 475-501.
    9. Hoekman, S. Kent & Broch, Amber, 2018. "Environmental implications of higher ethanol production and use in the U.S.: A literature review. Part II – Biodiversity, land use change, GHG emissions, and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3159-3177.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongshen Li & Hongrui Liu & Yufang Li & Jilin Nan & Chen Shi & Shizhong Li, 2021. "Combined Vapor Permeation and Continuous Solid-State Distillation for Energy-Efficient Bioethanol Production," Energies, MDPI, vol. 14(8), pages 1-15, April.
    2. Hongshen Li & Shizhong Li, 2020. "Optimization of Continuous Solid-State Distillation Process for Cost-Effective Bioethanol Production," Energies, MDPI, vol. 13(4), pages 1-21, February.
    3. Tamás Mizik, 2021. "Economic Aspects and Sustainability of Ethanol Production—A Systematic Literature Review," Energies, MDPI, vol. 14(19), pages 1-25, September.
    4. Weng, Yuwei & Chang, Shiyan & Cai, Wenjia & Wang, Can, 2019. "Exploring the impacts of biofuel expansion on land use change and food security based on a land explicit CGE model: A case study of China," Applied Energy, Elsevier, vol. 236(C), pages 514-525.
    5. Johansson, R. & Meyer, S. & Whistance, J. & Thompson, W. & Debnath, D., 2020. "Greenhouse gas emission reduction and cost from the United States biofuels mandate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    6. Arora, Amarpreet Singh & Nawaz, Alam & Qyyum, Muhammad Abdul & Ismail, Sherif & Aslam, Muhammad & Tawfik, Ahmed & Yun, Choa Mun & Lee, Moonyong, 2021. "Energy saving anammox technology-based nitrogen removal and bioenergy recovery from wastewater: Inhibition mechanisms, state-of-the-art control strategies, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Ozoegwu, C.G. & Eze, C. & Onwosi, C.O. & Mgbemene, C.A. & Ozor, P.A., 2017. "Biomass and bioenergy potential of cassava waste in Nigeria: Estimations based partly on rural-level garri processing case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 625-638.
    8. Jiang, Dong & Wang, Qian & Ding, Fangyu & Fu, Jingying & Hao, Mengmeng, 2019. "Potential marginal land resources of cassava worldwide: A data-driven analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 167-173.
    9. Nalawade, Satish & Nalawade, Swati & Liu, Chunlin & Jansson, Christer & Sun, Chuanxin, 2012. "Development of an efficient Tissue Culture after Crossing (TCC) system for transgenic improvement of barley as a bioenergy crop," Applied Energy, Elsevier, vol. 91(1), pages 405-411.
    10. García, Antonio & Monsalve-Serrano, Javier & Martínez-Boggio, Santiago & Rückert Roso, Vinícius & Duarte Souza Alvarenga Santos, Nathália, 2020. "Potential of bio-ethanol in different advanced combustion modes for hybrid passenger vehicles," Renewable Energy, Elsevier, vol. 150(C), pages 58-77.
    11. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Piotr Banaszuk, 2020. "GHG Emissions and Efficiency of Energy Generation through Anaerobic Fermentation of Wetland Biomass," Energies, MDPI, vol. 13(24), pages 1-25, December.
    12. Farah Hadjkacem & Guillaume Pierre & Gwendoline Christophe & Jihen Elleuch & Imen Fendri & Zakaria Boual & Mohamed Didi Ould El Hadj & Zainab El Alaoui-Talibi & Cherkaoui El Modafar & Pascal Dubessay , 2022. "Bioconversion of the Brown Tunisian Seaweed Halopteris scoparia : Application to Energy," Energies, MDPI, vol. 15(12), pages 1-16, June.
    13. Nariê Rinke Dias de Souza & Bruno Colling Klein & Mateus Ferreira Chagas & Otavio Cavalett & Antonio Bonomi, 2021. "Towards Comparable Carbon Credits: Harmonization of LCA Models of Cellulosic Biofuels," Sustainability, MDPI, vol. 13(18), pages 1-17, September.
    14. Sahu, Omprakash, 2021. "Appropriateness of rose (Rosa hybrida) for bioethanol conversion with enzymatic hydrolysis: Sustainable development on green fuel production," Energy, Elsevier, vol. 232(C).
    15. Lin, Boqiang & Xu, Bin, 2018. "How to promote the growth of new energy industry at different stages?," Energy Policy, Elsevier, vol. 118(C), pages 390-403.
    16. Wu, Horng-Wen & Lin, Ke-Wei, 2019. "Hydrogen-rich syngas production by reforming of ethanol blended with aqueous urea using a thermodynamic analysis," Energy, Elsevier, vol. 166(C), pages 541-551.
    17. Bechara, Rami & Gomez, Adrien & Saint-Antonin, Valérie & Schweitzer, Jean-Marc & Maréchal, François & Ensinas, Adriano, 2018. "Review of design works for the conversion of sugarcane to first and second-generation ethanol and electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 152-164.
    18. Ghadge, Abhijeet & van der Werf, Sjoerd & Er Kara, Merve & Goswami, Mohit & Kumar, Pankaj & Bourlakis, Michael, 2020. "Modelling the impact of climate change risk on bioethanol supply chains," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    19. Okudoh, Vincent & Trois, Cristina & Workneh, Tilahun & Schmidt, Stefan, 2014. "The potential of cassava biomass and applicable technologies for sustainable biogas production in South Africa: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1035-1052.
    20. Nayak, Abhishek & Pulidindi, Indra Neel & Rao, Chinta Sankar, 2020. "Novel strategies for glucose production from biomass using heteropoly acid catalyst," Renewable Energy, Elsevier, vol. 159(C), pages 215-220.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6301-:d:648992. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.