IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i9p2271-d353995.html
   My bibliography  Save this article

The Impact of Surrogate Models on the Multi-Objective Optimization of Pump-As-Turbine (PAT)

Author

Listed:
  • Stephen Ntiri Asomani

    (National Research Center of Pumps, Jiangsu University, Zhenjiang 212013, China)

  • Jianping Yuan

    (National Research Center of Pumps, Jiangsu University, Zhenjiang 212013, China
    Institute of Fluid Engineering Equipment, JITRI, Jiangsu University, Zhenjiang 212013, China)

  • Longyan Wang

    (National Research Center of Pumps, Jiangsu University, Zhenjiang 212013, China
    School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane 4001, Australia)

  • Desmond Appiah

    (National Research Center of Pumps, Jiangsu University, Zhenjiang 212013, China)

  • Kofi Asamoah Adu-Poku

    (National Research Center of Pumps, Jiangsu University, Zhenjiang 212013, China)

Abstract

Pump-as-turbine (PAT) technology permits two operating states—as a pump or turbine, depending on the demand. Nevertheless, designing the geometrical components to suit these operating states has been an unending design issue, because of the multi-conditions for the PAT technology that must be attained to enhance the hydraulic performance. Also, PAT has been known to have a narrow operating range and operates poorly at off-design conditions, due to the lack of flow control device and poor geometrical designs. Therefore, for the PAT to have a wider operating range and operate effectively at off-design conditions, the geometric parameters need to be optimized. Since it is practically impossible to optimize more than one objective function at the same time, a suitable surrogate model is needed to mimic the objective functions for it to be solvable. In this study, the Latin hypercube sampling method was used to obtain the objective function values, the Adaptive Neuro-Fuzzy Inference System (ANFIS), Artificial Neural Network (ANN) and Generalized Regression Neural Network (GRNN) were used as surrogate models to approximate the objective functions in the design space. Then, a suitable surrogate model was chosen for the optimization. The Pareto-optimal solutions were obtained by using the Pareto-based genetic algorithm (PBGA). To evaluate the results of the optimization, three representative Pareto-optimal points were selected and analyzed. Compared to the baseline model, the Pareto-optimal points showed a great improvement in the objective functions. After optimization, the geometry of the impeller was redesigned to suit the operating conditions of PAT. The findings show that the efficiencies of the optimized design variables of PAT were enhanced by 23.7%, 11.5%, and 10.4% at part load, design point, and under overload flow conditions, respectively. Moreover, the results also indicated that the chosen design variables ( b 2 , β 2 , β 1 , and z ) had a substantial impact on the objective functions, justifying the feasibility of the optimization method employed in this study.

Suggested Citation

  • Stephen Ntiri Asomani & Jianping Yuan & Longyan Wang & Desmond Appiah & Kofi Asamoah Adu-Poku, 2020. "The Impact of Surrogate Models on the Multi-Objective Optimization of Pump-As-Turbine (PAT)," Energies, MDPI, vol. 13(9), pages 1-29, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2271-:d:353995
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/9/2271/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/9/2271/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kleijnen, Jack P.C., 2009. "Kriging metamodeling in simulation: A review," European Journal of Operational Research, Elsevier, vol. 192(3), pages 707-716, February.
    2. Gholap, A.K. & Khan, J.A., 2007. "Design and multi-objective optimization of heat exchangers for refrigerators," Applied Energy, Elsevier, vol. 84(12), pages 1226-1239, December.
    3. Ali Hadi Abdulwahid & Shaorong Wang, 2016. "A Novel Approach for Microgrid Protection Based upon Combined ANFIS and Hilbert Space-Based Power Setting," Energies, MDPI, vol. 9(12), pages 1-25, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Longyan Wang & Stephen Ntiri Asomani & Jianping Yuan & Desmond Appiah, 2020. "Geometrical Optimization of Pump-As-Turbine (PAT) Impellers for Enhancing Energy Efficiency with 1-D Theory," Energies, MDPI, vol. 13(16), pages 1-30, August.
    2. Morabito, Alessandro & Vagnoni, Elena & Di Matteo, Mariano & Hendrick, Patrick, 2021. "Numerical investigation on the volute cutwater for pumps running in turbine mode," Renewable Energy, Elsevier, vol. 175(C), pages 807-824.
    3. Jian Xu & Longyan Wang & Stephen Ntiri Asomani & Wei Luo & Rong Lu, 2020. "Improvement of Internal Flow Performance of a Centrifugal Pump-As-Turbine (PAT) by Impeller Geometric Optimization," Mathematics, MDPI, vol. 8(10), pages 1-23, October.
    4. Grzegorz Filo, 2023. "Artificial Intelligence Methods in Hydraulic System Design," Energies, MDPI, vol. 16(8), pages 1-19, April.
    5. Maxime Binama & Kan Kan & Huixiang Chen & Yuan Zheng & Daqing Zhou & Alexis Muhirwa & Godfrey M. Bwimba, 2021. "Investigation into Pump Mode Flow Dynamics for a Mixed Flow PAT with Adjustable Runner Blades," Energies, MDPI, vol. 14(9), pages 1-28, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Yun-Chao & Chen, Qun, 2013. "A theoretical global optimization method for vapor-compression refrigeration systems based on entransy theory," Energy, Elsevier, vol. 60(C), pages 464-473.
    2. Luo, Xianglong & Yi, Zhitong & Zhang, Bingjian & Mo, Songping & Wang, Chao & Song, Mengjie & Chen, Ying, 2017. "Mathematical modelling and optimization of the liquid separation condenser used in organic Rankine cycle," Applied Energy, Elsevier, vol. 185(P2), pages 1309-1323.
    3. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    4. Wang, Zequn & Wang, Pingfeng, 2015. "A double-loop adaptive sampling approach for sensitivity-free dynamic reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 346-356.
    5. Puppo, L. & Pedroni, N. & Maio, F. Di & Bersano, A. & Bertani, C. & Zio, E., 2021. "A Framework based on Finite Mixture Models and Adaptive Kriging for Characterizing Non-Smooth and Multimodal Failure Regions in a Nuclear Passive Safety System," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    6. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    7. Wen, Zhixun & Pei, Haiqing & Liu, Hai & Yue, Zhufeng, 2016. "A Sequential Kriging reliability analysis method with characteristics of adaptive sampling regions and parallelizability," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 170-179.
    8. Gaspar, B. & Teixeira, A.P. & Guedes Soares, C., 2017. "Adaptive surrogate model with active refinement combining Kriging and a trust region method," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 277-291.
    9. Palar, Pramudita Satria & Zuhal, Lavi Rizki & Shimoyama, Koji, 2023. "Enhancing the explainability of regression-based polynomial chaos expansion by Shapley additive explanations," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    10. Turati, Pietro & Pedroni, Nicola & Zio, Enrico, 2017. "Simulation-based exploration of high-dimensional system models for identifying unexpected events," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 317-330.
    11. Veerapandiyan Veerasamy & Noor Izzri Abdul Wahab & Rajeswari Ramachandran & Muhammad Mansoor & Mariammal Thirumeni & Mohammad Lutfi Othman, 2018. "High Impedance Fault Detection in Medium Voltage Distribution Network Using Discrete Wavelet Transform and Adaptive Neuro-Fuzzy Inference System," Energies, MDPI, vol. 11(12), pages 1-24, November.
    12. Wu, Zeping & Wang, Donghui & Okolo N, Patrick & Hu, Fan & Zhang, Weihua, 2016. "Global sensitivity analysis using a Gaussian Radial Basis Function metamodel," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 171-179.
    13. Bahadori, Alireza, 2011. "Simple method for estimation of effectiveness in one tube pass and one shell pass counter-flow heat exchangers," Applied Energy, Elsevier, vol. 88(11), pages 4191-4196.
    14. Liang Pei & Chunhui Wang & Liying Sun & Lili Wang, 2022. "Temporal and Spatial Variation (2001–2020) Characteristics of Wind Speed in the Water Erosion Area of the Typical Black Soil Region, Northeast China," IJERPH, MDPI, vol. 19(17), pages 1-17, August.
    15. Strang, Kenneth David, 2012. "Importance of verifying queue model assumptions before planning with simulation software," European Journal of Operational Research, Elsevier, vol. 218(2), pages 493-504.
    16. Jesús Martínez-Frutos & David Herrero-Pérez, 2016. "Kriging-based infill sampling criterion for constraint handling in multi-objective optimization," Journal of Global Optimization, Springer, vol. 64(1), pages 97-115, January.
    17. Wu, Xu & Kozlowski, Tomasz & Meidani, Hadi, 2018. "Kriging-based inverse uncertainty quantification of nuclear fuel performance code BISON fission gas release model using time series measurement data," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 422-436.
    18. Hossieny, Nemat & Shrestha, Som S. & Owusu, Osei A. & Natal, Manuel & Benson, Rick & Desjarlais, Andre, 2019. "Improving the energy efficiency of a refrigerator-freezer through the use of a novel cabinet/door liner based on polylactide biopolymer," Applied Energy, Elsevier, vol. 235(C), pages 1-9.
    19. Shao, Liang-Liang & Yang, Liang & Zhang, Chun-Lu, 2010. "Comparison of heat pump performance using fin-and-tube and microchannel heat exchangers under frost conditions," Applied Energy, Elsevier, vol. 87(4), pages 1187-1197, April.
    20. Dawei Zhan & Huanlai Xing, 2020. "Expected improvement for expensive optimization: a review," Journal of Global Optimization, Springer, vol. 78(3), pages 507-544, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2271-:d:353995. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.