Advanced Search
MyIDEAS: Login to save this article or follow this journal

Simple method for estimation of effectiveness in one tube pass and one shell pass counter-flow heat exchangers

Contents:

Author Info

  • Bahadori, Alireza
Registered author(s):

    Abstract

    In one tube pass and one shell pass counter-flow heat exchangers, when both streams change temperature by different amounts, the effectiveness is defined as the temperature change for the stream with lower capacity divided by the maximum possible change and the effectiveness depends on the number of transfer units and the thermal capacity ratio. In this paper, an attempt has been made to formulate a simple-to-use method which is easier than existing approaches, less complicated and with fewer computations for accurate and rapid estimation of effectiveness in one tube pass and one shell pass counter-flow heat exchangers as a function of number of transfer units and the thermal capacity ratio. The proposed method permits estimating the exit temperature for a one tube pass and one shell pass counter-flow heat exchanger without a trial-and-error calculation. The average absolute deviations between the reported data and the proposed correlations are found to be less than 2% demonstrating the excellent performance of proposed correlation. The tool developed in this study can be of immense practical value for engineers and scientists to have a quick check on the effectiveness in one tube pass and one shell pass counter-flow heat exchangers at various conditions without opting for any experimental measurements. In particular, practice engineers would find the predictive tool to be user-friendly with transparent calculations involving no complex expressions.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911002947
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Applied Energy.

    Volume (Year): 88 (2011)
    Issue (Month): 11 ()
    Pages: 4191-4196

    as in new window
    Handle: RePEc:eee:appene:v:88:y:2011:i:11:p:4191-4196

    Contact details of provider:
    Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description

    Order Information:
    Postal: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
    Web: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic

    Related research

    Keywords: Heat exchanger; Effectiveness; Thermal capacity ratio; Heat transfer;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Bahadori, Alireza & Vuthaluru, Hari B., 2010. "Novel predictive tools for design of radiant and convective sections of direct fired heaters," Applied Energy, Elsevier, vol. 87(7), pages 2194-2202, July.
    2. Bahadori, Alireza, 2011. "Prediction of compressed air transport properties at elevated pressures and high temperatures using simple method," Applied Energy, Elsevier, vol. 88(4), pages 1434-1440, April.
    3. Bahadori, Alireza & Vuthaluru, Hari B., 2010. "A simple method for the estimation of thermal insulation thickness," Applied Energy, Elsevier, vol. 87(2), pages 613-619, February.
    4. Gholap, A.K. & Khan, J.A., 2007. "Design and multi-objective optimization of heat exchangers for refrigerators," Applied Energy, Elsevier, vol. 84(12), pages 1226-1239, December.
    5. Guo, Jiangfeng & Xu, Mingtian & Cheng, Lin, 2009. "The application of field synergy number in shell-and-tube heat exchanger optimization design," Applied Energy, Elsevier, vol. 86(10), pages 2079-2087, October.
    6. Rose, Jørgen & Nielsen, Toke Rammer & Kragh, Jesper & Svendsen, Svend, 2008. "Quasi-steady-state model of a counter-flow air-to-air heat-exchanger with phase change," Applied Energy, Elsevier, vol. 85(5), pages 312-325, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:11:p:4191-4196. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.