IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i8p2065-d348297.html
   My bibliography  Save this article

Prospect Prediction of Terminal Clean Power Consumption in China via LSSVM Algorithm Based on Improved Evolutionary Game Theory

Author

Listed:
  • Shuxia Yang

    (School of Economics and Management, North China Electric Power University, Changping, Beijing 102206, China)

  • Xianguo Zhu

    (School of Economics and Management, North China Electric Power University, Changping, Beijing 102206, China)

  • Shengjiang Peng

    (School of Economics and Management, North China Electric Power University, Changping, Beijing 102206, China)

Abstract

In recent years, China’s terminal clean power replacement construction has experienced rapid development, and China’s installed photovoltaic and wind energy capacity has soared to become the highest in the world. Precise and effective prediction of the scale of terminal clean power replacement can not only help make reasonable adjustments to the proportion of clean power capacity, but also promote the reduction of carbon emissions and enhance environmental benefits. In order to predict the prospects of China’s terminal clean energy consumption, first of all, the main factors affecting the clean power of the terminal are screened by using the grey revelance theory. Then, an evolutionary game theory (EGT) optimized least squares support vector machine (LSSVM) machine intelligence algorithm and an adaptive differential evolution (ADE) algorithm are applied in the example analysis, and empirical analysis shows that this model has a strong generalization ability, and that the prediction result is better than other models. Finally, we use the EGT–ADE–LSSVM combined model to predict China’s terminal clean energy consumption from 2019 to 2030, which showed that the prospect of China’s terminal clean power consumption is close to forty thousand billion KWh.

Suggested Citation

  • Shuxia Yang & Xianguo Zhu & Shengjiang Peng, 2020. "Prospect Prediction of Terminal Clean Power Consumption in China via LSSVM Algorithm Based on Improved Evolutionary Game Theory," Energies, MDPI, vol. 13(8), pages 1-17, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:2065-:d:348297
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/8/2065/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/8/2065/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ji, Ping & Ma, Xin & Li, Gang, 2015. "Developing green purchasing relationships for the manufacturing industry: An evolutionary game theory perspective," International Journal of Production Economics, Elsevier, vol. 166(C), pages 155-162.
    2. Jorgen W. Weibull, 1997. "Evolutionary Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262731215, December.
    3. Alessandrini, S. & Delle Monache, L. & Sperati, S. & Nissen, J.N., 2015. "A novel application of an analog ensemble for short-term wind power forecasting," Renewable Energy, Elsevier, vol. 76(C), pages 768-781.
    4. Zhao, Yongning & Ye, Lin & Li, Zhi & Song, Xuri & Lang, Yansheng & Su, Jian, 2016. "A novel bidirectional mechanism based on time series model for wind power forecasting," Applied Energy, Elsevier, vol. 177(C), pages 793-803.
    5. Menglu Li & Wei Wang & Gejirifu De & Xionghua Ji & Zhongfu Tan, 2018. "Forecasting Carbon Emissions Related to Energy Consumption in Beijing-Tianjin-Hebei Region Based on Grey Prediction Theory and Extreme Learning Machine Optimized by Support Vector Machine Algorithm," Energies, MDPI, vol. 11(9), pages 1-15, September.
    6. Xing Zhang, 2018. "Short-Term Load Forecasting for Electric Bus Charging Stations Based on Fuzzy Clustering and Least Squares Support Vector Machine Optimized by Wolf Pack Algorithm," Energies, MDPI, vol. 11(6), pages 1-18, June.
    7. repec:hhs:iuiwop:487 is not listed on IDEAS
    8. De Giorgi, M.G. & Malvoni, M. & Congedo, P.M., 2016. "Comparison of strategies for multi-step ahead photovoltaic power forecasting models based on hybrid group method of data handling networks and least square support vector machine," Energy, Elsevier, vol. 107(C), pages 360-373.
    9. Haoran Zhao & Sen Guo & Huiru Zhao, 2017. "Energy-Related CO 2 Emissions Forecasting Using an Improved LSSVM Model Optimized by Whale Optimization Algorithm," Energies, MDPI, vol. 10(7), pages 1-15, June.
    10. Qunli Wu & Chenyang Peng, 2016. "A Least Squares Support Vector Machine Optimized by Cloud-Based Evolutionary Algorithm for Wind Power Generation Prediction," Energies, MDPI, vol. 9(8), pages 1-20, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shiqiu Zhu & Yuanying Chi & Kaiye Gao & Yahui Chen & Rui Peng, 2022. "Analysis of Influencing Factors of Thermal Coal Price," Energies, MDPI, vol. 15(15), pages 1-16, August.
    2. Dong-Dong Yuan & Ming Li & Heng-Yi Li & Cheng-Jian Lin & Bing-Xiang Ji, 2022. "Wind Power Prediction Method: Support Vector Regression Optimized by Improved Jellyfish Search Algorithm," Energies, MDPI, vol. 15(17), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dongxiao Niu & Di Pu & Shuyu Dai, 2018. "Ultra-Short-Term Wind-Power Forecasting Based on the Weighted Random Forest Optimized by the Niche Immune Lion Algorithm," Energies, MDPI, vol. 11(5), pages 1-21, April.
    2. Huang, Xingjun & Lin, Yun & Lim, Ming K. & Zhou, Fuli & Ding, Rui & Zhang, Zusheng, 2022. "Evolutionary dynamics of promoting electric vehicle-charging infrastructure based on public–private partnership cooperation," Energy, Elsevier, vol. 239(PD).
    3. Huiru Zhao & Guo Huang & Ning Yan, 2018. "Forecasting Energy-Related CO 2 Emissions Employing a Novel SSA-LSSVM Model: Considering Structural Factors in China," Energies, MDPI, vol. 11(4), pages 1-21, March.
    4. Ziang Liu & Tatsushi Nishi, 2019. "Government Regulations on Closed-Loop Supply Chain with Evolutionarily Stable Strategy," Sustainability, MDPI, vol. 11(18), pages 1-29, September.
    5. Hao, Ying & Dong, Lei & Liao, Xiaozhong & Liang, Jun & Wang, Lijie & Wang, Bo, 2019. "A novel clustering algorithm based on mathematical morphology for wind power generation prediction," Renewable Energy, Elsevier, vol. 136(C), pages 572-585.
    6. Shuyu Dai & Dongxiao Niu & Yaru Han, 2018. "Forecasting of Energy-Related CO 2 Emissions in China Based on GM(1,1) and Least Squares Support Vector Machine Optimized by Modified Shuffled Frog Leaping Algorithm for Sustainability," Sustainability, MDPI, vol. 10(4), pages 1-17, March.
    7. Shahriari, M. & Cervone, G. & Clemente-Harding, L. & Delle Monache, L., 2020. "Using the analog ensemble method as a proxy measurement for wind power predictability," Renewable Energy, Elsevier, vol. 146(C), pages 789-801.
    8. González-Sopeña, J.M. & Pakrashi, V. & Ghosh, B., 2021. "An overview of performance evaluation metrics for short-term statistical wind power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    9. Yangke Ding & Lei Ma & Ye Zhang & Dingzhong Feng, 2018. "Analysis of Evolution Mechanism and Optimal Reward-Penalty Mechanism for Collection Strategies in Reverse Supply Chains: The Case of Waste Mobile Phones in China," Sustainability, MDPI, vol. 10(12), pages 1-17, December.
    10. Kehong Li & Wenke Wang & Yadong Zhang & Tao Zheng & Jin Guo, 2019. "Game Modelling and Strategy Research on the System Dynamics–Based Quadruplicate Evolution for High–Speed Railway Operational Safety Supervision System," Sustainability, MDPI, vol. 11(5), pages 1-17, March.
    11. Qianqian Shi & Jianbo Zhu & Qian Li, 2018. "Cooperative Evolutionary Game and Applications in Construction Supplier Tendency," Complexity, Hindawi, vol. 2018, pages 1-13, January.
    12. Wang, Cong & Zhang, Hongli & Fan, Wenhui & Ma, Ping, 2017. "A new chaotic time series hybrid prediction method of wind power based on EEMD-SE and full-parameters continued fraction," Energy, Elsevier, vol. 138(C), pages 977-990.
    13. Fang Liu & Ranran Li & Aliona Dreglea, 2019. "Wind Speed and Power Ultra Short-Term Robust Forecasting Based on Takagi–Sugeno Fuzzy Model," Energies, MDPI, vol. 12(18), pages 1-16, September.
    14. Dufwenberg, Martin, 1997. "Some relationships between evolutionary stability criteria in games," Economics Letters, Elsevier, vol. 57(1), pages 45-50, November.
    15. Lichi Zhang & Yanyan Jiang & Junmin Wu, 2022. "Evolutionary Game Analysis of Government and Residents’ Participation in Waste Separation Based on Cumulative Prospect Theory," IJERPH, MDPI, vol. 19(21), pages 1-16, November.
    16. Xingwei Li & Jingru Li & Yicheng Huang & Jinrong He & Xiang Liu & Jiachi Dai & Qiong Shen, 2022. "Construction enterprises’ adoption of green development behaviors: an agent-based modeling approach," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-11, December.
    17. Georgios Delagrammatikas & Spyridon Roukanas, 2023. "Offshore Wind Farm in the Southeast Aegean Sea and Energy Security," Energies, MDPI, vol. 16(13), pages 1-21, July.
    18. Hua Pan & Huimin Zhu & Minmin Teng, 2023. "Low-Carbon Transformation Strategy for Blockchain-Based Power Supply Chain," Sustainability, MDPI, vol. 15(16), pages 1-22, August.
    19. Guohui Song & Yongbin Wang, 2021. "Mainstream Value Information Push Strategy on Chinese Aggregation News Platform: Evolution, Modelling and Analysis," Sustainability, MDPI, vol. 13(19), pages 1-17, October.
    20. Sandholm,W.H., 2003. "Excess payoff dynamics, potential dynamics, and stable games," Working papers 5, Wisconsin Madison - Social Systems.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:2065-:d:348297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.