IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i8p1951-d345996.html
   My bibliography  Save this article

Evaluating the Potential for Combustion of Biofuels in Grate Furnaces

Author

Listed:
  • Małgorzata Wzorek

    (Department of Process Engineering, Faculty of Mechanical Engineering, Opole University of Technology, ul. Prószkowska 76, 45-758 Opole, Poland)

Abstract

The paper assesses the impact of combustion of biofuels produced based on municipal sewage sludge in stoker-fired boilers on the amount of pollutant emissions and examines the tendency of ash deposition of biofuels formed during the combustion process. The combustion tests were performed in a laboratory system enabling simulation of a combustion process present in stoker-fired boilers. The study was conducted for three types of biofuels; i.e., fuel from sewage sludge and coal slime (PBS fuel), sewage sludge and meat and bone meal (PBM fuel) and fuel based on sewage sludge and sawdust (PBT) with particle size of 35 mm and 15 mm. This paper describes and compares the combustion process of biofuels with different granulation and composition and presents the results of changes in emission values of NO x , SO 2 , CO, and CO 2 . The emission results were compared with the corresponding results obtained during combustion of hard coal. The results showed that biofuels with lower particle sizes were ignited faster and the shortest ignition time is achieved for fuel based on sewage sludge and coal slime-PBS fuel. Also, the highest NO and SO 2 emissions were obtained for PBS fuel. During the combustion of fuel based on sewage sludge and meat and bone meal (PBM), on the other hand, the highest CO 2 emissions were observed for both granulations. Biofuels from sludge show a combustion process that is different compared to the one for hard coal. The problems of ash fouling, slagging, and deposition during biofuels combustion were also identified. The tendency for ash slagging and fouling is observed, especially for fuel from sewage sludge and meat and bone meal (PBM) and fuel based on sewage sludge and sawdust (PBT) ashes which consist of meat and bone meal and sawdust which is typical for biomass combustion.

Suggested Citation

  • Małgorzata Wzorek, 2020. "Evaluating the Potential for Combustion of Biofuels in Grate Furnaces," Energies, MDPI, vol. 13(8), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:1951-:d:345996
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/8/1951/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/8/1951/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guan-Bang Chen & Samuel Chatelier & Hsien-Tsung Lin & Fang-Hsien Wu & Ta-Hui Lin, 2018. "A Study of Sewage Sludge Co-Combustion with Australian Black Coal and Shiitake Substrate," Energies, MDPI, vol. 11(12), pages 1-25, December.
    2. Ehsan Houshfar & Terese Løvås & Øyvind Skreiberg, 2012. "Experimental Investigation on NO x Reduction by Primary Measures in Biomass Combustion: Straw, Peat, Sewage Sludge, Forest Residues and Wood Pellets," Energies, MDPI, vol. 5(2), pages 1-21, February.
    3. Xiao, Han-min & Ma, Xiao-qian & Lai, Zhi-yi, 2009. "Isoconversional kinetic analysis of co-combustion of sewage sludge with straw and coal," Applied Energy, Elsevier, vol. 86(9), pages 1741-1745, September.
    4. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    5. Nadziakiewicz, Jan & Koziol, Michal, 2003. "Co-combustion of sludge with coal," Applied Energy, Elsevier, vol. 75(3-4), pages 239-248, July.
    6. Hao Rong & Teng Wang & Min Zhou & Hao Wang & Haobo Hou & Yongjie Xue, 2017. "Combustion Characteristics and Slagging during Co-Combustion of Rice Husk and Sewage Sludge Blends," Energies, MDPI, vol. 10(4), pages 1-13, March.
    7. Lara Febrero & Enrique Granada & Araceli Regueiro & José Luis Míguez, 2015. "Influence of Combustion Parameters on Fouling Composition after Wood Pellet Burning in a Lab-Scale Low-Power Boiler," Energies, MDPI, vol. 8(9), pages 1-23, September.
    8. Sever Akdağ, Ayşe & Atak, Onur & Atimtay, Aysel T. & Sanin, Faika Dilek, 2018. "Co-combustion of sewage sludge from different treatment processes and a lignite coal in a laboratory scale combustor," Energy, Elsevier, vol. 158(C), pages 417-426.
    9. Lee, Jong-Min & Kim, Down-Won & Kim, Jae-Sung & Na, Jeong-Geol & Lee, See-Hoon, 2010. "Co-combustion of refuse derived fuel with Korean anthracite in a commercial circulating fluidized bed boiler," Energy, Elsevier, vol. 35(7), pages 2814-2818.
    10. Tae-Yong Jeong & Lkhagvadorj Sh & Jong-Ho Kim & Byoung-Hwa Lee & Chung-Hwan Jeon, 2019. "Experimental Investigation of Ash Deposit Behavior during Co-Combustion of Bituminous Coal with Wood Pellets and Empty Fruit Bunches," Energies, MDPI, vol. 12(11), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piotr Sakiewicz & Krzysztof Piotrowski & Mariola Rajca & Izabella Maj & Sylwester Kalisz & Józef Ober & Janusz Karwot & Krishna R. Pagilla, 2022. "Innovative Technological Approach for the Cyclic Nutrients Adsorption by Post-Digestion Sewage Sludge-Based Ash Co-Formed with Some Nanostructural Additives under a Circular Economy Framework," IJERPH, MDPI, vol. 19(17), pages 1-28, September.
    2. Andrzej Rostocki & Hilal Unyay & Katarzyna Ławińska & Andrzej Obraniak, 2022. "Granulates Based on Bio and Industrial Waste and Biochar in a Sustainable Economy," Energies, MDPI, vol. 16(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrzej Greinert & Maria Mrówczyńska & Radosław Grech & Wojciech Szefner, 2020. "The Use of Plant Biomass Pellets for Energy Production by Combustion in Dedicated Furnaces," Energies, MDPI, vol. 13(2), pages 1-17, January.
    2. Andrzej Greinert & Maria Mrówczyńska & Wojciech Szefner, 2019. "The Use of Waste Biomass from the Wood Industry and Municipal Sources for Energy Production," Sustainability, MDPI, vol. 11(11), pages 1-19, May.
    3. Jiang, Peng & Meng, Yang & Parvez, Ashak Mahmud & Dong, Xin-yue & Wu, Xin-yun & Xu, Meng-xia & Pang, Cheng Heng & Sun, Cheng-gong & Wu, Tao, 2021. "Influence of co-processing of coal and oil shale on combustion characteristics, kinetics and ash fusion behaviour," Energy, Elsevier, vol. 216(C).
    4. Sever Akdağ, Ayşe & Atak, Onur & Atimtay, Aysel T. & Sanin, Faika Dilek, 2018. "Co-combustion of sewage sludge from different treatment processes and a lignite coal in a laboratory scale combustor," Energy, Elsevier, vol. 158(C), pages 417-426.
    5. Tae-Yong Jeong & Lkhagvadorj Sh & Jong-Ho Kim & Byoung-Hwa Lee & Chung-Hwan Jeon, 2019. "Experimental Investigation of Ash Deposit Behavior during Co-Combustion of Bituminous Coal with Wood Pellets and Empty Fruit Bunches," Energies, MDPI, vol. 12(11), pages 1-17, May.
    6. Yarima Torreiro & Leticia Pérez & Gonzalo Piñeiro & Francisco Pedras & Angela Rodríguez-Abalde, 2020. "The Role of Energy Valuation of Agroforestry Biomass on the Circular Economy," Energies, MDPI, vol. 13(10), pages 1-13, May.
    7. Jumoke Oladejo & Kaiqi Shi & Xiang Luo & Gang Yang & Tao Wu, 2018. "A Review of Sludge-to-Energy Recovery Methods," Energies, MDPI, vol. 12(1), pages 1-38, December.
    8. Tan, Peng & Ma, Lun & Xia, Ji & Fang, Qingyan & Zhang, Cheng & Chen, Gang, 2017. "Co-firing sludge in a pulverized coal-fired utility boiler: Combustion characteristics and economic impacts," Energy, Elsevier, vol. 119(C), pages 392-399.
    9. Villanthenkodath, Muhammed Ashiq & Mahalik, Mantu Kumar, 2021. "Does economic growth respond to electricity consumption asymmetrically in Bangladesh? The implication for environmental sustainability," Energy, Elsevier, vol. 233(C).
    10. Shahbaz, Muhammad & Hoang, Thi Hong Van & Mahalik, Mantu Kumar & Roubaud, David, 2017. "Energy consumption, financial development and economic growth in India: New evidence from a nonlinear and asymmetric analysis," Energy Economics, Elsevier, vol. 63(C), pages 199-212.
    11. Wanhe Hu & Jingxin Wang & Jianli Hu & Jamie Schuler & Shawn Grushecky & Changle Jiang & William Smith & Nan Nan & Edward M. Sabolsky, 2024. "Combustion Behaviors, Kinetics, and Thermodynamics of Naturally Decomposed and Torrefied Northern Red Oak ( Quercus rubra ) Forest Logging Residue," Energies, MDPI, vol. 17(7), pages 1-17, March.
    12. Mollik, Sazib & Rashid, M.M. & Hasanuzzaman, M. & Karim, M.E. & Hosenuzzaman, M., 2016. "Prospects, progress, policies, and effects of rural electrification in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 553-567.
    13. Obsatar Sinaga & Mohd Haizam Mohd Saudi & Djoko Roespinoedji & Mohd Shahril Ahmad Razimi, 2019. "The Dynamic Relationship between Natural Gas and Economic Growth: Evidence from Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(3), pages 388-394.
    14. Teng, Meixuan & Burke, Paul J. & Liao, Hua, 2019. "The demand for coal among China's rural households: Estimates of price and income elasticities," Energy Economics, Elsevier, vol. 80(C), pages 928-936.
    15. Ruqayya Ibraheem & Ismat Nasim, 2021. "Globalization, Energy Use and Environmental Degradation in Thailand," iRASD Journal of Energy and Environment, International Research Association for Sustainable Development (iRASD), vol. 2(1), pages 01-11, June.
    16. Ouyang, Yaofu & Li, Peng, 2018. "On the nexus of financial development, economic growth, and energy consumption in China: New perspective from a GMM panel VAR approach," Energy Economics, Elsevier, vol. 71(C), pages 238-252.
    17. Muhammad Shahbaz & Syed Jawad Hussain Shahzad & Mantu Kumar Mahalik & Perry Sadorsky, 2018. "How strong is the causal relationship between globalization and energy consumption in developed economies? A country-specific time-series and panel analysis," Applied Economics, Taylor & Francis Journals, vol. 50(13), pages 1479-1494, March.
    18. Sinha, Avik & Shahbaz, Muhammad, 2018. "Estimation of Environmental Kuznets Curve for CO2 emission: Role of renewable energy generation in India," Renewable Energy, Elsevier, vol. 119(C), pages 703-711.
    19. Miriam Müller & Oscar Reutter, 2017. "Vision Development towards a Sustainable North Rhine-Westphalia 2030 in a Science-Practice-Dialogue," Sustainability, MDPI, vol. 9(7), pages 1-27, June.
    20. Simshauser, P., 2019. "On the impact of government-initiated CfD’s in Australia’s National Electricity Market," Cambridge Working Papers in Economics 1901, Faculty of Economics, University of Cambridge.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:1951-:d:345996. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.