IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i7p1619-d340233.html
   My bibliography  Save this article

Small-Scale Modelling of Individual Greenhouse Gas Abatement Measures in Industry

Author

Listed:
  • Tobias Hübner

    (Forschungsgesellschaft für Energiewirtschaft (FfE), Munich 80995, Germany
    Chair of Energy Economy and Application Technology, Technical University Munich (TUM), Munich 80333, Germany)

Abstract

The dynamic bottom-up modelling of greenhouse gas (GHG) abatement measures in industry makes it possible to derive consistent transformation paths on the basis of heterogeneous, process-specific developments. The main focus is on the development of a transparent methodology for small-scale modelling and combination of individual GHG abatement measures. In this way, interactions between GHG abatement measures are taken into account when deriving industrial transformation paths. The presented three-part methodological approach comprises the preparation (1) and implementation (2) of GHG abatement measures as well as the resulting effects on the output parameters (3) in a technology mix module. In order to consider interactions in the measures implementation, year-specific overall measure matrices are created and prioritised based on the GHG abatement costs. Finally, the three-part methodology is tested in a consistent technology mix scenario. The results show that the methodology enables integrated industrial technology mix scenarios with a high level of climate ambition based on a plausible development of energy consumption and emissions. Compared to the reference scenario, the process-and energy-related emissions decrease by 90 million tCO 2 (77% of the 1990 level in 2050). The developed methodology and the related technology mix scenario within the framework of the bottom-up industry model SmInd can support strategic decision-making in politics and an efficient transition to a greenhouse gas neutral industry.

Suggested Citation

  • Tobias Hübner, 2020. "Small-Scale Modelling of Individual Greenhouse Gas Abatement Measures in Industry," Energies, MDPI, vol. 13(7), pages 1-43, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1619-:d:340233
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/7/1619/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/7/1619/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Biermann, Franziska & Rose, Julia & Wenzel, Lars & Wilke, Christina Benita, 2015. "Standortatlas Chemie für die Region Unterelbe," HWWI Policy Papers 91, Hamburg Institute of International Economics (HWWI).
    2. Alexander Otto & Martin Robinius & Thomas Grube & Sebastian Schiebahn & Aaron Praktiknjo & Detlef Stolten, 2017. "Power-to-Steel: Reducing CO 2 through the Integration of Renewable Energy and Hydrogen into the German Steel Industry," Energies, MDPI, vol. 10(4), pages 1-21, April.
    3. Felix Böing & Anika Regett, 2019. "Hourly CO 2 Emission Factors and Marginal Costs of Energy Carriers in Future Multi-Energy Systems," Energies, MDPI, vol. 12(12), pages 1-32, June.
    4. Peter J. Loftus & Armond M. Cohen & Jane C. S. Long & Jesse D. Jenkins, 2015. "A critical review of global decarbonization scenarios: what do they tell us about feasibility?," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 6(1), pages 93-112, January.
    5. Jochen Conrad & Simon Greif, 2019. "Modelling Load Profiles of Heat Pumps," Energies, MDPI, vol. 12(4), pages 1-11, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Müller, Mathias & Blume, Yannic & Reinhard, Janis, 2022. "Impact of behind-the-meter optimised bidirectional electric vehicles on the distribution grid load," Energy, Elsevier, vol. 255(C).
    2. Muhammad Shahbaz & Vassilios G. Papavassiliou & Amine Lahiani & David Roubaud, 2023. "Are we moving towards decarbonisation of the global economy? Lessons from the distant past to the present," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(3), pages 2620-2634, July.
    3. Mikovits, Christian & Wetterlund, Elisabeth & Wehrle, Sebastian & Baumgartner, Johann & Schmidt, Johannes, 2021. "Stronger together: Multi-annual variability of hydrogen production supported by wind power in Sweden," Applied Energy, Elsevier, vol. 282(PB).
    4. Lopez, Gabriel & Galimova, Tansu & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2023. "Towards defossilised steel: Supply chain options for a green European steel industry," Energy, Elsevier, vol. 273(C).
    5. Christoph Sejkora & Johannes Lindorfer & Lisa Kühberger & Thomas Kienberger, 2021. "Interlinking the Renewable Electricity and Gas Sectors: A Techno-Economic Case Study for Austria," Energies, MDPI, vol. 14(19), pages 1-38, October.
    6. Deleidi, Matteo & Mazzucato, Mariana & Semieniuk, Gregor, 2020. "Neither crowding in nor out: Public direct investment mobilising private investment into renewable electricity projects," Energy Policy, Elsevier, vol. 140(C).
    7. Laslett, Dean & Carter, Craig & Creagh, Chris & Jennings, Philip, 2017. "A large-scale renewable electricity supply system by 2030: Solar, wind, energy efficiency, storage and inertia for the South West Interconnected System (SWIS) in Western Australia," Renewable Energy, Elsevier, vol. 113(C), pages 713-731.
    8. Capone, Martina & Guelpa, Elisa & Verda, Vittorio, 2021. "Multi-objective optimization of district energy systems with demand response," Energy, Elsevier, vol. 227(C).
    9. Fleschutz, Markus & Bohlayer, Markus & Braun, Marco & Henze, Gregor & Murphy, Michael D., 2021. "The effect of price-based demand response on carbon emissions in European electricity markets: The importance of adequate carbon prices," Applied Energy, Elsevier, vol. 295(C).
    10. Yang, F. & Meerman, J.C. & Faaij, A.P.C., 2021. "Carbon capture and biomass in industry: A techno-economic analysis and comparison of negative emission options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    11. Papadis, Elisa & Tsatsaronis, George, 2020. "Challenges in the decarbonization of the energy sector," Energy, Elsevier, vol. 205(C).
    12. Ferenc Szodrai, 2020. "Heat Sink Shape and Topology Optimization with Pareto-Vector Length Optimization for Air Cooling," Energies, MDPI, vol. 13(7), pages 1-15, April.
    13. Abraham Castro Garcia & Shuo Cheng & Jeffrey S. Cross, 2021. "Removing the Bottleneck on Wind Power Potential to Create Liquid Fuels from Locally Available Biomass," Energies, MDPI, vol. 14(12), pages 1-12, June.
    14. Ortiz-Imedio, Rafael & Caglayan, Dilara Gulcin & Ortiz, Alfredo & Heinrichs, Heidi & Robinius, Martin & Stolten, Detlef & Ortiz, Inmaculada, 2021. "Power-to-Ships: Future electricity and hydrogen demands for shipping on the Atlantic coast of Europe in 2050," Energy, Elsevier, vol. 228(C).
    15. King, Carey W., 2020. "An integrated biophysical and economic modeling framework for long-term sustainability analysis: the HARMONEY model," Ecological Economics, Elsevier, vol. 169(C).
    16. Alla Toktarova & Ida Karlsson & Johan Rootzén & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2020. "Pathways for Low-Carbon Transition of the Steel Industry—A Swedish Case Study," Energies, MDPI, vol. 13(15), pages 1-18, July.
    17. Welder, Lara & Ryberg, D.Severin & Kotzur, Leander & Grube, Thomas & Robinius, Martin & Stolten, Detlef, 2018. "Spatio-temporal optimization of a future energy system for power-to-hydrogen applications in Germany," Energy, Elsevier, vol. 158(C), pages 1130-1149.
    18. Steffen Wehkamp & Lucas Schmeling & Lena Vorspel & Fabian Roelcke & Kai-Lukas Windmeier, 2020. "District Energy Systems: Challenges and New Tools for Planning and Evaluation," Energies, MDPI, vol. 13(11), pages 1-20, June.
    19. Cotterman, Turner & Small, Mitchell J. & Wilson, Stephen & Abdulla, Ahmed & Wong-Parodi, Gabrielle, 2021. "Applying risk tolerance and socio-technical dynamics for more realistic energy transition pathways," Applied Energy, Elsevier, vol. 291(C).
    20. Filip Bartyzel & Tomasz Wegiel & Magdalena Kozień-Woźniak & Marek Czamara, 2022. "Numerical Simulation of Operating Parameters of the Ground Source Heat Pump," Energies, MDPI, vol. 15(1), pages 1-13, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1619-:d:340233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.