IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i5p1028-d325036.html
   My bibliography  Save this article

A New Design for Wood Stoves Based on Numerical Analysis and Experimental Research

Author

Listed:
  • Przemysław Motyl

    (Faculty of Mechanical Engineering, Kazimierz Pulaski University of Technology and Humanities in Radom, Stasieckiego 54, 26-600 Radom, Poland)

  • Marcin Wikło

    (Faculty of Mechanical Engineering, Kazimierz Pulaski University of Technology and Humanities in Radom, Stasieckiego 54, 26-600 Radom, Poland)

  • Julita Bukalska

    (Kratki.pl Marek Bal, W. Gombrowicza 4, 26-660 Wsola, Poland)

  • Bartosz Piechnik

    (Kratki.pl Marek Bal, W. Gombrowicza 4, 26-660 Wsola, Poland)

  • Rafał Kalbarczyk

    (Kratki.pl Marek Bal, W. Gombrowicza 4, 26-660 Wsola, Poland)

Abstract

This work proposes a comprehensive approach to modifying the design of wood stoves with a heating power up to 20 kW, including design works, simulations, and experimental research. The work is carried out in two stages. In the first part, a numerical model is proposed of the fireplace insert including fluid flow, the chemical combustion reaction, and heat exchange (FLUENT software is applied to solve the problem). The results of the simulation were compared with the experiment carried out on the test bench. A comparison of the experimental and numerical results was made for the temperature distribution along with the concentration of CO, CO 2 , and O 2 . Construction changes were proposed in the second stage, together with numerical simulations whose goal was an increase in the efficiency of the heating devices. The results obtained show that the average temperature in the chimney flue, which has a low value that is a determinant of the higher efficiency of the heating devices, was reduced relative to the initial design of the fireplace intake by 11%–16% in all cases. The retrofit enhanced stable heat release from the wood stove, which increased the efficiency and reduced the harmful components of combustion.

Suggested Citation

  • Przemysław Motyl & Marcin Wikło & Julita Bukalska & Bartosz Piechnik & Rafał Kalbarczyk, 2020. "A New Design for Wood Stoves Based on Numerical Analysis and Experimental Research," Energies, MDPI, vol. 13(5), pages 1-11, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1028-:d:325036
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/5/1028/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/5/1028/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mario Martín-Gamboa & Luis C. Dias & Paula Quinteiro & Fausto Freire & Luís Arroja & Ana Cláudia Dias, 2019. "Multi-Criteria and Life Cycle Assessment of Wood-Based Bioenergy Alternatives for Residential Heating: A Sustainability Analysis," Energies, MDPI, vol. 12(22), pages 1-17, November.
    2. Gheorghe Lazaroiu & Lucian Mihaescu & Gabriel Negreanu & Constantin Pana & Ionel Pisa & Alexandru Cernat & Dana-Alexandra Ciupageanu, 2018. "Experimental Investigations of Innovative Biomass Energy Harnessing Solutions," Energies, MDPI, vol. 11(12), pages 1-18, December.
    3. Tong Xing & Hongyu Lin & Zhongfu Tan & Liwei Ju, 2019. "Coordinated Energy Management for Micro Energy Systems Considering Carbon Emissions Using Multi-Objective Optimization," Energies, MDPI, vol. 12(23), pages 1-27, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dariusz Bajno & Łukasz Bednarz & Agnieszka Grzybowska, 2021. "The Role and Place of Traditional Chimney System Solutions in Environmental Progress and in Reducing Energy Consumption," Energies, MDPI, vol. 14(16), pages 1-32, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olga Porro & Francesc Pardo-Bosch & Núria Agell & Mónica Sánchez, 2020. "Understanding Location Decisions of Energy Multinational Enterprises within the European Smart Cities’ Context: An Integrated AHP and Extended Fuzzy Linguistic TOPSIS Method," Energies, MDPI, vol. 13(10), pages 1-29, May.
    2. Janis Edmunds Daugavietis & Raimonda Soloha & Elina Dace & Jelena Ziemele, 2022. "A Comparison of Multi-Criteria Decision Analysis Methods for Sustainability Assessment of District Heating Systems," Energies, MDPI, vol. 15(7), pages 1-23, March.
    3. Nepu Saha & Maurizio Volpe & Luca Fiori & Roberto Volpe & Antonio Messineo & M. Toufiq Reza, 2020. "Cationic Dye Adsorption on Hydrochars of Winery and Citrus Juice Industries Residues: Performance, Mechanism, and Thermodynamics," Energies, MDPI, vol. 13(18), pages 1-16, September.
    4. Xuyang Cui & Junhong Yang & Xinyu Shi & Wanning Lei & Tao Huang & Chao Bai, 2019. "Experimental Investigation on the Energy Consumption, Physical, and Thermal Properties of a Novel Pellet Fuel Made from Wood Residues with Microalgae as a Binder," Energies, MDPI, vol. 12(18), pages 1-26, September.
    5. Simioni, Taysnara & Agustini, Caroline Borges & Dettmer, Aline & Gutterres, Mariliz, 2022. "Enhancement of biogas production by anaerobic co-digestion of leather waste with raw and pretreated wheat straw," Energy, Elsevier, vol. 253(C).
    6. Jelena Topić Božič & Urška Fric & Ante Čikić & Simon Muhič, 2024. "Life Cycle Assessment of Using Firewood and Wood Pellets in Slovenia as Two Primary Wood-Based Heating Systems and Their Environmental Impact," Sustainability, MDPI, vol. 16(4), pages 1-14, February.
    7. Kamila Przybysz & Edyta Małachowska & Danuta Martyniak & Piotr Boruszewski & Halina Kalinowska & Piotr Przybysz, 2019. "Production of Sugar Feedstocks for Fermentation Processes from Selected Fast Growing Grasses," Energies, MDPI, vol. 12(16), pages 1-12, August.
    8. Michał Kaczmarczyk & Anna Sowiżdżał & Barbara Tomaszewska, 2020. "Energetic and Environmental Aspects of Individual Heat Generation for Sustainable Development at a Local Scale—A Case Study from Poland," Energies, MDPI, vol. 13(2), pages 1-16, January.
    9. Su, Sheng & Ge, Yang & Hou, Pan & Wang, Xin & Wang, Yachao & Lyu, Tao & Luo, Wanyou & Lai, Yitu & Ge, Yunshan & Lyu, Liqun, 2021. "China VI heavy-duty moving average window (MAW) method: Quantitative analysis of the problem, causes, and impacts based on the real driving data," Energy, Elsevier, vol. 225(C).
    10. Rodrigues Teixeira, Ana Carolina & Machado, Pedro Gerber & Borges, Raquel Rocha & Felipe Brito, Thiago Luis & Moutinho dos Santos, Edmilson & Mouette, Dominique, 2021. "The use of liquefied natural gas as an alternative fuel in freight transport – Evidence from a driver's point of view," Energy Policy, Elsevier, vol. 149(C).
    11. Yang Zhang & Zhenghui Fu & Yulei Xie & Qing Hu & Zheng Li & Huaicheng Guo, 2020. "A Comprehensive Forecasting–Optimization Analysis Framework for Environmental-Oriented Power System Management—A Case Study of Harbin City, China," Sustainability, MDPI, vol. 12(10), pages 1-26, May.
    12. Zuhal Akyürek, 2019. "Sustainable Valorization of Animal Manure and Recycled Polyester: Co-pyrolysis Synergy," Sustainability, MDPI, vol. 11(8), pages 1-14, April.
    13. Alicja Stoltmann, 2020. "Hybrid Multi-Criteria Method of Analyzing the Location of Distributed Renewable Energy Sources," Energies, MDPI, vol. 13(16), pages 1-22, August.
    14. Akhilesh Kumar Singh & Priti Pal & Saurabh Singh Rathore & Uttam Kumar Sahoo & Prakash Kumar Sarangi & Piotr Prus & Paweł Dziekański, 2023. "Sustainable Utilization of Biowaste Resources for Biogas Production to Meet Rural Bioenergy Requirements," Energies, MDPI, vol. 16(14), pages 1-22, July.
    15. Martín-Gamboa, Mario & Dias, Ana Cláudia & Iribarren, Diego, 2022. "Definition, assessment and prioritisation of strategies to mitigate social life-cycle impacts across the supply chain of bioelectricity: A case study in Portugal," Renewable Energy, Elsevier, vol. 194(C), pages 1110-1118.
    16. Sławomir Francik & Adrian Knapczyk & Artur Knapczyk & Renata Francik, 2020. "Decision Support System for the Production of Miscanthus and Willow Briquettes," Energies, MDPI, vol. 13(6), pages 1-24, March.
    17. Paramesh, Venkatesh & Arunachalam, Vadivel & Nath, Arun Jyoti, 2019. "Enhancing ecosystem services and energy use efficiency under organic and conventional nutrient management system to a sustainable arecanut based cropping system," Energy, Elsevier, vol. 187(C).
    18. Mario Martín-Gamboa & Paula Quinteiro & Ana Cláudia Dias & Diego Iribarren, 2021. "Comparative Social Life Cycle Assessment of Two Biomass-to-Electricity Systems," IJERPH, MDPI, vol. 18(9), pages 1-15, May.
    19. Kantorek, Marcin & Jesionek, Krzysztof & Polesek-Karczewska, Sylwia & Ziółkowski, Paweł & Stajnke, Michał & Badur, Janusz, 2021. "Thermal utilization of meat-and-bone meal using the rotary kiln pyrolyzer and the fluidized bed boiler – The performance of pilot-scale installation," Renewable Energy, Elsevier, vol. 164(C), pages 1447-1456.
    20. Spyridon Achinas & Johan Horjus & Vasileios Achinas & Gerrit Jan Willem Euverink, 2019. "A PESTLE Analysis of Biofuels Energy Industry in Europe," Sustainability, MDPI, vol. 11(21), pages 1-24, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1028-:d:325036. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.