IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5543-d433311.html
   My bibliography  Save this article

Feasibility of a 100% Global Renewable Energy System

Author

Listed:
  • Patrick Moriarty

    (Department of Design, Monash University-Caulfield Campus, P.O. Box 197, Caulfield East, Victoria 3145, Australia)

  • Damon Honnery

    (Department of Mechanical and Aerospace Engineering, Monash University-Clayton Campus, P.O. Box 31, Victoria 3800, Australia)

Abstract

Controversy exists as to whether renewable energy (RE) can provide for all the world’s energy needs. The purpose of this paper is to help resolve this vital question. Official forecasts see a resumption of a business-as-usual world after the pandemic-induced recession, with further economic growth out to at least 2050. The novel approach taken in this paper is to assume that such a world is fueled entirely with RE at global energy levels at or above those of today, and then to examine whether this scenario is feasible. Because the intermittent primary electricity sources, wind, and solar power, would have to supply nearly all this energy, a simplification made for this analysis is that they do supply 100% of all energy, including non-electrical energy needs. It is found that the energy that could be delivered by these two sources is much less than often assumed, for several reasons: The declining quality of inputs; the need for inclusion of uncounted environmental costs; the need for energy conversion and storage; and the removal of existing fossil fuel energy subsidies. It is concluded that a future world entirely fuelled by RE would necessarily be a lower-energy one.

Suggested Citation

  • Patrick Moriarty & Damon Honnery, 2020. "Feasibility of a 100% Global Renewable Energy System," Energies, MDPI, vol. 13(21), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5543-:d:433311
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5543/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5543/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Charles A. S. Hall & Stephen Balogh & David J.R. Murphy, 2009. "What is the Minimum EROI that a Sustainable Society Must Have?," Energies, MDPI, vol. 2(1), pages 1-23, January.
    2. Atse Louwen & Wilfried G. J. H. M. van Sark & André P. C. Faaij & Ruud E. I. Schropp, 2016. "Re-assessment of net energy production and greenhouse gas emissions avoidance after 40 years of photovoltaics development," Nature Communications, Nature, vol. 7(1), pages 1-9, December.
    3. Heard, B.P. & Brook, B.W. & Wigley, T.M.L. & Bradshaw, C.J.A., 2017. "Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1122-1133.
    4. Ferroni, Ferruccio & Hopkirk, Robert J., 2016. "Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation," Energy Policy, Elsevier, vol. 94(C), pages 336-344.
    5. Ferroni, Ferruccio & Guekos, Alexandros & Hopkirk, Robert J., 2017. "Further considerations to: Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation," Energy Policy, Elsevier, vol. 107(C), pages 498-505.
    6. Fizaine, Florian & Court, Victor, 2016. "Energy expenditure, economic growth, and the minimum EROI of society," Energy Policy, Elsevier, vol. 95(C), pages 172-186.
    7. Moriarty, Patrick & Honnery, Damon, 2016. "Can renewable energy power the future?," Energy Policy, Elsevier, vol. 93(C), pages 3-7.
    8. Liu, Feng & van den Bergh, Jeroen C.J.M., 2020. "Differences in CO2 emissions of solar PV production among technologies and regions: Application to China, EU and USA," Energy Policy, Elsevier, vol. 138(C).
    9. Paul E. Brockway & Anne Owen & Lina I. Brand-Correa & Lukas Hardt, 2019. "Estimation of global final-stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources," Nature Energy, Nature, vol. 4(7), pages 612-621, July.
    10. Samuel Alexander & Joshua Floyd, 2020. "The Political Economy of Deep Decarbonization: Tradable Energy Quotas for Energy Descent Futures," Energies, MDPI, vol. 13(17), pages 1-18, August.
    11. Graham Palmer & Joshua Floyd, 2017. "An Exploration of Divergence in EPBT and EROI for Solar Photovoltaics," Biophysical Economics and Resource Quality, Springer, vol. 2(4), pages 1-20, December.
    12. Nieto, Jaime & Carpintero, Óscar & Miguel, Luis J. & de Blas, Ignacio, 2020. "Macroeconomic modelling under energy constraints: Global low carbon transition scenarios," Energy Policy, Elsevier, vol. 137(C).
    13. Sinn, Hans-Werner, 2017. "Buffering volatility: A study on the limits of Germany's energy revolution," European Economic Review, Elsevier, vol. 99(C), pages 130-150.
    14. de Castro, Carlos & Mediavilla, Margarita & Miguel, Luis Javier & Frechoso, Fernando, 2013. "Global solar electric potential: A review of their technical and sustainable limits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 824-835.
    15. Dupont, Elise & Koppelaar, Rembrandt & Jeanmart, Hervé, 2020. "Global available solar energy under physical and energy return on investment constraints," Applied Energy, Elsevier, vol. 257(C).
    16. Trainer, Ted, 2013. "Can Europe run on renewable energy? A negative case," Energy Policy, Elsevier, vol. 63(C), pages 845-850.
    17. Marco Raugei, 2019. "Net energy analysis must not compare apples and oranges," Nature Energy, Nature, vol. 4(2), pages 86-88, February.
    18. Capellán-Pérez, Iñigo & de Castro, Carlos & Arto, Iñaki, 2017. "Assessing vulnerabilities and limits in the transition to renewable energies: Land requirements under 100% solar energy scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 760-782.
    19. Searchinger, Timothy D. & Beringer, Tim & Strong, Asa, 2017. "Does the world have low-carbon bioenergy potential from the dedicated use of land?," Energy Policy, Elsevier, vol. 110(C), pages 434-446.
    20. Martinopoulos, Georgios, 2020. "Are rooftop photovoltaic systems a sustainable solution for Europe? A life cycle impact assessment and cost analysis," Applied Energy, Elsevier, vol. 257(C).
    21. Weißbach, D. & Ruprecht, G. & Huke, A. & Czerski, K. & Gottlieb, S. & Hussein, A., 2013. "Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants," Energy, Elsevier, vol. 52(C), pages 210-221.
    22. Patrick Moriarty & Damon Honnery, 2019. "Energy Accounting for a Renewable Energy Future," Energies, MDPI, vol. 12(22), pages 1-16, November.
    23. Kaldellis, J.K. & Apostolou, D., 2017. "Life cycle energy and carbon footprint of offshore wind energy. Comparison with onshore counterpart," Renewable Energy, Elsevier, vol. 108(C), pages 72-84.
    24. Sahu, Alok & Yadav, Neha & Sudhakar, K., 2016. "Floating photovoltaic power plant: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 815-824.
    25. Pickard, William F., 2017. "A simple lower bound on the EROI of photovoltaic electricity generation," Energy Policy, Elsevier, vol. 107(C), pages 488-490.
    26. Sgouris Sgouridis & Michael Carbajales-Dale & Denes Csala & Matteo Chiesa & Ugo Bardi, 2019. "Comparative net energy analysis of renewable electricity and carbon capture and storage," Nature Energy, Nature, vol. 4(6), pages 456-465, June.
    27. Hall, Charles A.S. & Lambert, Jessica G. & Balogh, Stephen B., 2014. "EROI of different fuels and the implications for society," Energy Policy, Elsevier, vol. 64(C), pages 141-152.
    28. Steven J. Lade & Will Steffen & Wim Vries & Stephen R. Carpenter & Jonathan F. Donges & Dieter Gerten & Holger Hoff & Tim Newbold & Katherine Richardson & Johan Rockström, 2020. "Human impacts on planetary boundaries amplified by Earth system interactions," Nature Sustainability, Nature, vol. 3(2), pages 119-128, February.
    29. Jackson, Tim, 2019. "The Post-growth Challenge: Secular Stagnation, Inequality and the Limits to Growth," Ecological Economics, Elsevier, vol. 156(C), pages 236-246.
    30. Ajanovic, Amela & Haas, Reinhard, 2018. "Economic prospects and policy framework for hydrogen as fuel in the transport sector," Energy Policy, Elsevier, vol. 123(C), pages 280-288.
    31. Tremeac, Brice & Meunier, Francis, 2009. "Life cycle analysis of 4.5Â MW and 250Â W wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2104-2110, October.
    32. Raugei, Marco & Sgouridis, Sgouris & Murphy, David & Fthenakis, Vasilis & Frischknecht, Rolf & Breyer, Christian & Bardi, Ugo & Barnhart, Charles & Buckley, Alastair & Carbajales-Dale, Michael & Csala, 2017. "Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation: A comprehensive response," Energy Policy, Elsevier, vol. 102(C), pages 377-384.
    33. Ellabban, Omar & Abu-Rub, Haitham & Blaabjerg, Frede, 2014. "Renewable energy resources: Current status, future prospects and their enabling technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 748-764.
    34. Peter J. Loftus & Armond M. Cohen & Jane C. S. Long & Jesse D. Jenkins, 2015. "A critical review of global decarbonization scenarios: what do they tell us about feasibility?," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 6(1), pages 93-112, January.
    35. Carlos de Castro & Iñigo Capellán-Pérez, 2020. "Standard, Point of Use, and Extended Energy Return on Energy Invested (EROI) from Comprehensive Material Requirements of Present Global Wind, Solar, and Hydro Power Technologies," Energies, MDPI, vol. 13(12), pages 1-43, June.
    36. Moriarty, Patrick & Honnery, Damon, 2019. "Ecosystem maintenance energy and the need for a green EROI," Energy Policy, Elsevier, vol. 131(C), pages 229-234.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Borge-Diez, 2022. "Energy Policy, Energy Research, and Energy Politics: An Analytical Review of the Current Situation," Energies, MDPI, vol. 15(23), pages 1-13, November.
    2. Zheng, Shuxian & Zhou, Xuanru & Tan, Zhanglu & Liu, Chan & Hu, Han & Yuan, Hui & Peng, Shengnan & Cai, Xiaomei, 2023. "Assessment of the global energy transition: Based on trade embodied energy analysis," Energy, Elsevier, vol. 273(C).
    3. Li, Yanfei & Taghizadeh-Hesary, Farhad, 2022. "The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China," Energy Policy, Elsevier, vol. 160(C).
    4. Shengyu Tao & Yiqiang Zhang & Meng Yuan & Ruixiang Zhang & Zhongyan Xu & Yaojie Sun, 2021. "Behavioral Economics Optimized Renewable Power Grid: A Case Study of Household Energy Storage," Energies, MDPI, vol. 14(14), pages 1-17, July.
    5. Jacques, Pierre & Delannoy, Louis & Andrieu, Baptiste & Yilmaz, Devrim & Jeanmart, Hervé & Godin, Antoine, 2023. "Assessing the economic consequences of an energy transition through a biophysical stock-flow consistent model," Ecological Economics, Elsevier, vol. 209(C).
    6. Patrick Moriarty & Damon Honnery, 2023. "Are Energy Reductions Compatible with Economic Growth?," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    7. Vishal Ram & Surender Reddy Salkuti, 2023. "An Overview of Major Synthetic Fuels," Energies, MDPI, vol. 16(6), pages 1-35, March.
    8. Damon Honnery & Patrick Moriarty, 2022. "Deep Reductions in Energy Use: Hobson’s Choice in Climate’s Last-Chance Saloon," Energies, MDPI, vol. 16(1), pages 1-4, December.
    9. Agnieszka Sompolska-Rzechuła & Agnieszka Kurdyś-Kujawska, 2021. "Towards Understanding Interactions between Sustainable Development Goals: The Role of Climate-Well-Being Linkages. Experiences of EU Countries," Energies, MDPI, vol. 14(7), pages 1-20, April.
    10. Patrick Moriarty & Damon Honnery, 2023. "Review: The Energy Implications of Averting Climate Change Catastrophe," Energies, MDPI, vol. 16(17), pages 1-16, August.
    11. Patrick Moriarty & Damon Honnery, 2023. "Rethinking Notions of Energy Efficiency in a Global Context," Energies, MDPI, vol. 16(12), pages 1-14, June.
    12. Patrick Moriarty & Damon Honnery, 2022. "Renewable Energy and Energy Reductions or Solar Geoengineering for Climate Change Mitigation?," Energies, MDPI, vol. 15(19), pages 1-16, October.
    13. Louis Delannoy & Pierre-Yves Longaretti & David. J. Murphy & Emmanuel Prados, 2021. "Assessing Global Long-Term EROI of Gas: A Net-Energy Perspective on the Energy Transition," Energies, MDPI, vol. 14(16), pages 1-16, August.
    14. Marco Ferrante & Anuma Dangol & Shoshana Didi-Cohen & Gidon Winters & Vered Tzin & Michal Segoli, 2021. "Oil Pollution Affects the Central Metabolism of Keystone Vachellia ( Acacia ) Trees," Sustainability, MDPI, vol. 13(12), pages 1-12, June.
    15. Yongshi Jie & Xianhua Ji & Anzhi Yue & Jingbo Chen & Yupeng Deng & Jing Chen & Yi Zhang, 2020. "Combined Multi-Layer Feature Fusion and Edge Detection Method for Distributed Photovoltaic Power Station Identification," Energies, MDPI, vol. 13(24), pages 1-19, December.
    16. Jacek Brożyna & Wadim Strielkowski & Aleš Zpěvák, 2023. "Evaluating the Chances of Implementing the “Fit for 55” Green Transition Package in the V4 Countries," Energies, MDPI, vol. 16(6), pages 1-17, March.
    17. Abdul Ghani Olabi & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Mohamad Ramadan, 2021. "Critical Review of Flywheel Energy Storage System," Energies, MDPI, vol. 14(8), pages 1-33, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlos de Castro & Iñigo Capellán-Pérez, 2020. "Standard, Point of Use, and Extended Energy Return on Energy Invested (EROI) from Comprehensive Material Requirements of Present Global Wind, Solar, and Hydro Power Technologies," Energies, MDPI, vol. 13(12), pages 1-43, June.
    2. Patrick Moriarty & Damon Honnery, 2019. "Energy Accounting for a Renewable Energy Future," Energies, MDPI, vol. 12(22), pages 1-16, November.
    3. Marco Vittorio Ecclesia & João Santos & Paul E. Brockway & Tiago Domingos, 2022. "A Comprehensive Societal Energy Return on Investment Study of Portugal Reveals a Low but Stable Value," Energies, MDPI, vol. 15(10), pages 1-22, May.
    4. Roberto Leonardo Rana & Mariarosaria Lombardi & Pasquale Giungato & Caterina Tricase, 2020. "Trends in Scientific Literature on Energy Return Ratio of Renewable Energy Sources for Supporting Policymakers," Administrative Sciences, MDPI, vol. 10(2), pages 1-17, March.
    5. Kis, Zoltán & Pandya, Nikul & Koppelaar, Rembrandt H.E.M., 2018. "Electricity generation technologies: Comparison of materials use, energy return on investment, jobs creation and CO2 emissions reduction," Energy Policy, Elsevier, vol. 120(C), pages 144-157.
    6. Moriarty, Patrick & Honnery, Damon, 2019. "Ecosystem maintenance energy and the need for a green EROI," Energy Policy, Elsevier, vol. 131(C), pages 229-234.
    7. Diesendorf, M. & Wiedmann, T., 2020. "Implications of Trends in Energy Return on Energy Invested (EROI) for Transitioning to Renewable Electricity," Ecological Economics, Elsevier, vol. 176(C).
    8. Carlos Castro & Iñigo Capellán-Pérez, 2018. "Concentrated Solar Power: Actual Performance and Foreseeable Future in High Penetration Scenarios of Renewable Energies," Biophysical Economics and Resource Quality, Springer, vol. 3(3), pages 1-20, September.
    9. Aljoša Slameršak & Giorgos Kallis & Daniel W. O’Neill, 2022. "Energy requirements and carbon emissions for a low-carbon energy transition," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Jacques, Pierre & Delannoy, Louis & Andrieu, Baptiste & Yilmaz, Devrim & Jeanmart, Hervé & Godin, Antoine, 2023. "Assessing the economic consequences of an energy transition through a biophysical stock-flow consistent model," Ecological Economics, Elsevier, vol. 209(C).
    11. David J. Murphy & Marco Raugei & Michael Carbajales-Dale & Brenda Rubio Estrada, 2022. "Energy Return on Investment of Major Energy Carriers: Review and Harmonization," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    12. John W. Day & Christopher F. D’Elia & Adrian R. H. Wiegman & Jeffrey S. Rutherford & Charles A. S. Hall & Robert R. Lane & David E. Dismukes, 2018. "The Energy Pillars of Society: Perverse Interactions of Human Resource Use, the Economy, and Environmental Degradation," Biophysical Economics and Resource Quality, Springer, vol. 3(1), pages 1-16, March.
    13. Walmsley, Timothy G. & Walmsley, Michael R.W. & Varbanov, Petar S. & Klemeš, Jiří J., 2018. "Energy Ratio analysis and accounting for renewable and non-renewable electricity generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 328-345.
    14. Ferroni, Ferruccio & Guekos, Alexandros & Hopkirk, Robert J., 2017. "Further considerations to: Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation," Energy Policy, Elsevier, vol. 107(C), pages 498-505.
    15. Dupont, Elise & Koppelaar, Rembrandt & Jeanmart, Hervé, 2018. "Global available wind energy with physical and energy return on investment constraints," Applied Energy, Elsevier, vol. 209(C), pages 322-338.
    16. Hongshuo Yan & Lianyong Feng & Jianliang Wang & Yuanying Chi & Yue Ma, 2021. "A Comprehensive Net Energy Analysis and Outlook of Energy System in China," Biophysical Economics and Resource Quality, Springer, vol. 6(4), pages 1-14, December.
    17. Dupont, Elise & Koppelaar, Rembrandt & Jeanmart, Hervé, 2020. "Global available solar energy under physical and energy return on investment constraints," Applied Energy, Elsevier, vol. 257(C).
    18. Patrick Moriarty & Damon Honnery, 2019. "Energy Efficiency or Conservation for Mitigating Climate Change?," Energies, MDPI, vol. 12(18), pages 1-17, September.
    19. Ignacio Mauleón, 2020. "Economic Issues in Deep Low-Carbon Energy Systems," Energies, MDPI, vol. 13(16), pages 1-32, August.
    20. Adrien Fabre, 2018. "Evolution of EROIs of Electricity Until 2050: Estimation Using the Input-Output Model THEMIS," Policy Papers 2018.09, FAERE - French Association of Environmental and Resource Economists.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5543-:d:433311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.