IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4682-d410734.html
   My bibliography  Save this article

Decision Making Support for Local Authorities Choosing the Method for Siting of In-City EV Charging Stations

Author

Listed:
  • Grzegorz Sierpiński

    (Faculty of Transport and Aviation Engineering, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland)

  • Marcin Staniek

    (Faculty of Transport and Aviation Engineering, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland)

  • Marcin Jacek Kłos

    (Faculty of Transport and Aviation Engineering, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland)

Abstract

Development of electromobility in urban areas requires an appropriate level of vehicle charging infrastructure. Numerous methods for siting of charging stations have been developed to date, and they appear to be delivering diverse outcomes for the same area, which is why local authorities face the problem of choosing the right station layout. The solution proposed in this article is to use a travel planner to evaluate the distribution of charging stations over the area of a metropolis. The decision making support is achieved by determining optimal travel routes for electric vehicles according to their initial state of charge for the three selected station siting methods. The evaluation focused on the following three aspects: (1) number of travels that cannot be made (due to the lack of a charging station at a certain distance around the start point), (2) extension of the travel caused by the need to recharge the vehicle on-route, and (3) additional energy consumption by electric vehicles required to reach the charging station (necessity of departing from the optimal route). An analysis of the results has made it possible to determine a solution which is superior to others. For the case study analysed in the paper, i.e., the territory of the Metropolis of Upper Silesia and Dabrową Basin (Górnośląsko-Zagłębiowska Metropolia, GZM), the distribution of charging stations established in line with method I has returned the best results. What the method in question also makes possible is to indicate a safe minimum energy reserve to complete the travel by eliminating situations of unexpected vehicle immobilisation due to on-route energy depletion and by minimising the phenomenon referred to as range anxiety.

Suggested Citation

  • Grzegorz Sierpiński & Marcin Staniek & Marcin Jacek Kłos, 2020. "Decision Making Support for Local Authorities Choosing the Method for Siting of In-City EV Charging Stations," Energies, MDPI, vol. 13(18), pages 1-28, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4682-:d:410734
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4682/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4682/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Csiszár, Csaba & Csonka, Bálint & Földes, Dávid & Wirth, Ervin & Lovas, Tamás, 2019. "Urban public charging station locating method for electric vehicles based on land use approach," Journal of Transport Geography, Elsevier, vol. 74(C), pages 173-180.
    2. Rui Chen & Xinglu Liu & Lixin Miao & Peng Yang, 2020. "Electric Vehicle Tour Planning Considering Range Anxiety," Sustainability, MDPI, vol. 12(9), pages 1-17, May.
    3. Yuan Qiao & Kaisheng Huang & Johannes Jeub & Jianan Qian & Yizhou Song, 2018. "Deploying Electric Vehicle Charging Stations Considering Time Cost and Existing Infrastructure," Energies, MDPI, vol. 11(9), pages 1-13, September.
    4. Shareef, Hussain & Islam, Md. Mainul & Mohamed, Azah, 2016. "A review of the stage-of-the-art charging technologies, placement methodologies, and impacts of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 403-420.
    5. Kazemi, Mohammad Amin & Sedighizadeh, Mostafa & Mirzaei, Mohammad Javad & Homaee, Omid, 2016. "Optimal siting and sizing of distribution system operator owned EV parking lots," Applied Energy, Elsevier, vol. 179(C), pages 1176-1184.
    6. Tian Mao & Xin Zhang & Baorong Zhou, 2019. "Intelligent Energy Management Algorithms for EV-charging Scheduling with Consideration of Multiple EV Charging Modes," Energies, MDPI, vol. 12(2), pages 1-17, January.
    7. Karol Tucki & Olga Orynycz & Antoni Świć & Mateusz Mitoraj-Wojtanek, 2019. "The Development of Electromobility in Poland and EU States as a Tool for Management of CO 2 Emissions," Energies, MDPI, vol. 12(15), pages 1-22, July.
    8. Erbaş, Mehmet & Kabak, Mehmet & Özceylan, Eren & Çetinkaya, Cihan, 2018. "Optimal siting of electric vehicle charging stations: A GIS-based fuzzy Multi-Criteria Decision Analysis," Energy, Elsevier, vol. 163(C), pages 1017-1031.
    9. Namdeo, A. & Tiwary, A. & Dziurla, R., 2014. "Spatial planning of public charging points using multi-dimensional analysis of early adopters of electric vehicles for a city region," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 188-200.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shohreh Moradi & Grzegorz Sierpiński & Houshmand Masoumi, 2022. "System Dynamics Modeling and Fuzzy MCDM Approach as Support for Assessment of Sustainability Management on the Example of Transport Sector Company," Energies, MDPI, vol. 15(13), pages 1-27, July.
    2. Renata Żochowska & Marcin Jacek Kłos & Piotr Soczówka & Marcin Pilch, 2022. "Assessment of Accessibility of Public Transport by Using Temporal and Spatial Analysis," Sustainability, MDPI, vol. 14(23), pages 1-29, December.
    3. Mostafa Mahdy & AbuBakr S. Bahaj & Philip Turner & Naomi Wise & Abdulsalam S. Alghamdi & Hidab Hamwi, 2022. "Multi Criteria Decision Analysis to Optimise Siting of Electric Vehicle Charging Points—Case Study Winchester District, UK," Energies, MDPI, vol. 15(7), pages 1-16, March.
    4. Kłos, Marcin Jacek & Sierpiński, Grzegorz, 2023. "Siting of electric vehicle charging stations method addressing area potential and increasing their accessibility," Journal of Transport Geography, Elsevier, vol. 109(C).
    5. Mikołaj Schmidt & Paweł Zmuda-Trzebiatowski & Marcin Kiciński & Piotr Sawicki & Konrad Lasak, 2021. "Multiple-Criteria-Based Electric Vehicle Charging Infrastructure Design Problem," Energies, MDPI, vol. 14(11), pages 1-34, May.
    6. Yu Feng & Xiaochun Lu, 2021. "Construction Planning and Operation of Battery Swapping Stations for Electric Vehicles: A Literature Review," Energies, MDPI, vol. 14(24), pages 1-19, December.
    7. Adrian Barchański & Renata Żochowska & Marcin Jacek Kłos, 2022. "A Method for the Identification of Critical Interstop Sections in Terms of Introducing Electric Buses in Public Transport," Energies, MDPI, vol. 15(20), pages 1-37, October.
    8. Marcin Jacek Kłos & Grzegorz Sierpiński, 2021. "Building a Model of Integration of Urban Sharing and Public Transport Services," Sustainability, MDPI, vol. 13(6), pages 1-26, March.
    9. Marcin Wołek & Agnieszka Szmelter-Jarosz & Marcin Koniak & Anna Golejewska, 2020. "Transformation of Trolleybus Transport in Poland. Does In-Motion Charging (Technology) Matter?," Sustainability, MDPI, vol. 12(22), pages 1-25, November.
    10. Marta Borowska-Stefańska & Michał Kowalski & Paulina Kurzyk & Miroslava Mikušová & Szymon Wiśniewski, 2021. "Privileging Electric Vehicles as an Element of Promoting Sustainable Urban Mobility—Effects on the Local Transport System in a Large Metropolis in Poland," Energies, MDPI, vol. 14(13), pages 1-24, June.
    11. Renata Żochowska & Marianna Jacyna & Marcin Jacek Kłos & Piotr Soczówka, 2021. "A GIS-Based Method of the Assessment of Spatial Integration of Bike-Sharing Stations," Sustainability, MDPI, vol. 13(7), pages 1-29, April.
    12. Shohreh Moradi & Hamid Reza Ahadi & Grzegorz Sierpiński, 2023. "Sustainable Management of Railway Companies Amid Inflation and Reduced Government Subsidies: A System Dynamics Approach," Sustainability, MDPI, vol. 15(14), pages 1-23, July.
    13. Adam Przybylowski & Sandra Stelmak & Michal Suchanek, 2021. "Mobility Behaviour in View of the Impact of the COVID-19 Pandemic—Public Transport Users in Gdansk Case Study," Sustainability, MDPI, vol. 13(1), pages 1-12, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christos Karolemeas & Stefanos Tsigdinos & Panagiotis G. Tzouras & Alexandros Nikitas & Efthimios Bakogiannis, 2021. "Determining Electric Vehicle Charging Station Location Suitability: A Qualitative Study of Greek Stakeholders Employing Thematic Analysis and Analytical Hierarchy Process," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    2. Cláudia A. Soares Machado & Harmi Takiya & Charles Lincoln Kenji Yamamura & José Alberto Quintanilha & Fernando Tobal Berssaneti, 2020. "Placement of Infrastructure for Urban Electromobility: A Sustainable Approach," Sustainability, MDPI, vol. 12(16), pages 1-18, August.
    3. Das, H.S. & Rahman, M.M. & Li, S. & Tan, C.W., 2020. "Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    4. Mortaz, Ebrahim & Vinel, Alexander & Dvorkin, Yury, 2019. "An optimization model for siting and sizing of vehicle-to-grid facilities in a microgrid," Applied Energy, Elsevier, vol. 242(C), pages 1649-1660.
    5. Mikołaj Schmidt & Paweł Zmuda-Trzebiatowski & Marcin Kiciński & Piotr Sawicki & Konrad Lasak, 2021. "Multiple-Criteria-Based Electric Vehicle Charging Infrastructure Design Problem," Energies, MDPI, vol. 14(11), pages 1-34, May.
    6. Abood Mourad & Martin Hennebel & Ahmed Amrani & Amira Ben Hamida, 2021. "Analyzing the Fast-Charging Potential for Electric Vehicles with Local Photovoltaic Power Production in French Suburban Highway Network," Energies, MDPI, vol. 14(9), pages 1-20, April.
    7. Sikder, Sujit Kumar & Nagarajan, Magesh & Mustafee, Navonil, 2023. "Augmenting EV charging infrastructure towards transformative sustainable cities: An equity-based approach," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    8. Metais, M.O. & Jouini, O. & Perez, Y. & Berrada, J. & Suomalainen, E., 2022. "Too much or not enough? Planning electric vehicle charging infrastructure: A review of modeling options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    9. Morro-Mello, Igoor & Padilha-Feltrin, Antonio & Melo, Joel D. & Calviño, Aida, 2019. "Fast charging stations placement methodology for electric taxis in urban zones," Energy, Elsevier, vol. 188(C).
    10. He, Sylvia Y. & Kuo, Yong-Hong & Sun, Ka Kit, 2022. "The spatial planning of public electric vehicle charging infrastructure in a high-density city using a contextualised location-allocation model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 21-44.
    11. Mohammadi Landi, Meysam & Mohammadi, Mohammad & Rastegar, Mohammad, 2018. "Simultaneous determination of optimal capacity and charging profile of plug-in electric vehicle parking lots in distribution systems," Energy, Elsevier, vol. 158(C), pages 504-511.
    12. Jiwon Lee & Midam An & Yongku Kim & Jung-In Seo, 2021. "Optimal Allocation for Electric Vehicle Charging Stations," Energies, MDPI, vol. 14(18), pages 1-10, September.
    13. Shafqat Jawad & Junyong Liu, 2020. "Electrical Vehicle Charging Services Planning and Operation with Interdependent Power Networks and Transportation Networks: A Review of the Current Scenario and Future Trends," Energies, MDPI, vol. 13(13), pages 1-24, July.
    14. Vladimír Konečný & Jozef Gnap & Tomáš Settey & František Petro & Tomáš Skrúcaný & Tomasz Figlus, 2020. "Environmental Sustainability of the Vehicle Fleet Change in Public City Transport of Selected City in Central Europe," Energies, MDPI, vol. 13(15), pages 1-23, July.
    15. Md. Mosaraf Hossain Khan & Amran Hossain & Aasim Ullah & Molla Shahadat Hossain Lipu & S. M. Shahnewaz Siddiquee & M. Shafiul Alam & Taskin Jamal & Hafiz Ahmed, 2021. "Integration of Large-Scale Electric Vehicles into Utility Grid: An Efficient Approach for Impact Analysis and Power Quality Assessment," Sustainability, MDPI, vol. 13(19), pages 1-18, October.
    16. Danijela Tuljak-Suban & Patricija Bajec, 2022. "A Hybrid DEA Approach for the Upgrade of an Existing Bike-Sharing System with Electric Bikes," Energies, MDPI, vol. 15(21), pages 1-23, October.
    17. Morro-Mello, Igoor & Padilha-Feltrin, Antonio & Melo, Joel D. & Heymann, Fabian, 2021. "Spatial connection cost minimization of EV fast charging stations in electric distribution networks using local search and graph theory," Energy, Elsevier, vol. 235(C).
    18. István Árpád & Judit T. Kiss & Gábor Bellér & Dénes Kocsis, 2021. "Sustainability Investigation of Vehicles’ CO 2 Emission in Hungary," Sustainability, MDPI, vol. 13(15), pages 1-15, July.
    19. Csiszár, Csaba & Csonka, Bálint & Földes, Dávid & Wirth, Ervin & Lovas, Tamás, 2020. "Location optimisation method for fast-charging stations along national roads," Journal of Transport Geography, Elsevier, vol. 88(C).
    20. Wang, Mengmeng & Liu, Kang & Dutta, Shanta & Alessi, Daniel S. & Rinklebe, Jörg & Ok, Yong Sik & Tsang, Daniel C.W., 2022. "Recycling of lithium iron phosphate batteries: Status, technologies, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4682-:d:410734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.