IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2913-d368073.html
   My bibliography  Save this article

Assessing the Impact of Investments in Cross-Border Pipelines on the Security of Gas Supply in the EU

Author

Listed:
  • Yassine Rqiq

    (Department of Electrical Engineering, University of Zaragoza, Maria de Luna 3, 50018 Zaragoza, Spain)

  • Jesus Beyza

    (Department of Electrical Engineering, University of Zaragoza, Maria de Luna 3, 50018 Zaragoza, Spain)

  • Jose M. Yusta

    (Department of Electrical Engineering, University of Zaragoza, Maria de Luna 3, 50018 Zaragoza, Spain)

  • Ricardo Bolado-Lavin

    (European Commission—DG Joint Research Centre, Westerduinweg 3, NL-1755 LE Petten, The Netherlands)

Abstract

The European Union (EU) is highly dependent on external natural gas supplies and has experienced severe gas cuts in the past, mainly driven by the technical complexity of the high-pressure natural gas system and political instability in some of the supplier countries. Declining indigenous natural gas production and growing demand for gas in the EU has encouraged investments in cross-border transmission capacity to increase the sharing of resources between the member states, particularly in the aftermath of the Russia–Ukraine gas crisis in January 2009. This article models the EU interconnected natural gas system to assess the impact of investments in the gas transmission network by comparing the performance of the system for scenarios of 2009 and 2017, using a mathematical optimization approach. The model uses the technical data of the infrastructures, such as production, storage, regasification, and exchange capacity through cross-border pipelines, and proposes an optimal collaborative strategy which ensures the best possible coverage of overall demand. The actual peak demand situations of the extreme cases of 2009 and 2017 are analyzed under hypothetical supply crises caused by geopolitical or commercial disputes. The application of the proposed methodology leads to results which show that the investments made in this system do not decongest the cross-border pipeline network but improve the demand coverage. Countries such as Spain and Italy experience a lower impact on gas supply due to the variety of mechanisms available to cover their demand. Furthermore, the findings prove that cooperation facilitates the supply of demand in crisis situations.

Suggested Citation

  • Yassine Rqiq & Jesus Beyza & Jose M. Yusta & Ricardo Bolado-Lavin, 2020. "Assessing the Impact of Investments in Cross-Border Pipelines on the Security of Gas Supply in the EU," Energies, MDPI, vol. 13(11), pages 1-23, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2913-:d:368073
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2913/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2913/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Flouri, Maria & Karakosta, Charikleia & Kladouchou, Charikleia & Psarras, John, 2015. "How does a natural gas supply interruption affect the EU gas security? A Monte Carlo simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 785-796.
    2. Bilgin, Mert, 2009. "Geopolitics of European natural gas demand: Supplies from Russia, Caspian and the Middle East," Energy Policy, Elsevier, vol. 37(11), pages 4482-4492, November.
    3. Monforti, F. & Szikszai, A., 2010. "A MonteCarlo approach for assessing the adequacy of the European gas transmission system under supply crisis conditions," Energy Policy, Elsevier, vol. 38(5), pages 2486-2498, May.
    4. Deane, J.P. & Ó Ciaráin, M. & Ó Gallachóir, B.P., 2017. "An integrated gas and electricity model of the EU energy system to examine supply interruptions," Applied Energy, Elsevier, vol. 193(C), pages 479-490.
    5. Rodríguez-Gómez, Nuria & Zaccarelli, Nicola & Bolado-Lavín, Ricardo, 2016. "European ability to cope with a gas crisis. Comparison between 2009 and 2014," Energy Policy, Elsevier, vol. 97(C), pages 461-474.
    6. Voropai, N.I. & Senderov, S.M. & Edelev, A.V., 2012. "Detection of “bottlenecks” and ways to overcome emergency situations in gas transportation networks on the example of the European gas pipeline network," Energy, Elsevier, vol. 42(1), pages 3-9.
    7. Pambour, Kwabena Addo & Cakir Erdener, Burcin & Bolado-Lavin, Ricardo & Dijkema, Gerard P.J., 2017. "SAInt – A novel quasi-dynamic model for assessing security of supply in coupled gas and electricity transmission networks," Applied Energy, Elsevier, vol. 203(C), pages 829-857.
    8. Eser, P. & Chokani, N. & Abhari, R., 2019. "Impact of Nord Stream 2 and LNG on gas trade and security of supply in the European gas network of 2030," Applied Energy, Elsevier, vol. 238(C), pages 816-830.
    9. Richter, Philipp M. & Holz, Franziska, 2015. "All quiet on the eastern front? Disruption scenarios of Russian natural gas supply to Europe," Energy Policy, Elsevier, vol. 80(C), pages 177-189.
    10. Buttler, Alexander & Spliethoff, Hartmut, 2018. "Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2440-2454.
    11. Austvik, Ole Gunnar, 2016. "The Energy Union and security-of-gas supply," Energy Policy, Elsevier, vol. 96(C), pages 372-382.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sesini, Marzia & Giarola, Sara & Hawkes, Adam D., 2021. "Strategic natural gas storage coordination among EU member states in response to disruption in the trans Austria gas pipeline: A stochastic approach to solidarity," Energy, Elsevier, vol. 235(C).
    2. Wiktor Hebda, 2021. "The North-South Gas Corridor in the Context of Poland’s Gas Transmission System—A Perfect Opportunity to Diversify Gas Resources," Energies, MDPI, vol. 14(21), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sesini, Marzia & Giarola, Sara & Hawkes, Adam D., 2020. "The impact of liquefied natural gas and storage on the EU natural gas infrastructure resilience," Energy, Elsevier, vol. 209(C).
    2. Yu, Weichao & Gong, Jing & Song, Shangfei & Huang, Weihe & Li, Yichen & Zhang, Jie & Hong, Bingyuan & Zhang, Ye & Wen, Kai & Duan, Xu, 2019. "Gas supply reliability analysis of a natural gas pipeline system considering the effects of underground gas storages," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    3. Xuejie Li & Yuan Xue & Yuxing Li & Qingshan Feng, 2022. "An Optimization Method for a Compressor Standby Scheme Based on Reliability Analysis," Energies, MDPI, vol. 15(21), pages 1-16, November.
    4. Yu, Weichao & Song, Shangfei & Li, Yichen & Min, Yuan & Huang, Weihe & Wen, Kai & Gong, Jing, 2018. "Gas supply reliability assessment of natural gas transmission pipeline systems," Energy, Elsevier, vol. 162(C), pages 853-870.
    5. Sesini, Marzia & Giarola, Sara & Hawkes, Adam D., 2022. "Solidarity measures: Assessment of strategic gas storage on EU regional risk groups natural gas supply resilience," Applied Energy, Elsevier, vol. 308(C).
    6. Yu, Weichao & Huang, Weihe & Wen, Yunhao & Li, Yichen & Liu, Hongfei & Wen, Kai & Gong, Jing & Lu, Yanan, 2021. "An integrated gas supply reliability evaluation method of the large-scale and complex natural gas pipeline network based on demand-side analysis," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    7. Gillessen, B. & Heinrichs, H. & Hake, J.-F. & Allelein, H.-J., 2019. "Natural gas as a bridge to sustainability: Infrastructure expansion regarding energy security and system transition," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    8. Philipp Hauser & Sina Heidari & Christoph Weber & Dominik Möst, 2019. "Does Increasing Natural Gas Demand in the Power Sector Pose a Threat of Congestion to the German Gas Grid? A Model-Coupling Approach," Energies, MDPI, vol. 12(11), pages 1-22, June.
    9. Su, Huai & Zhang, Jinjun & Zio, Enrico & Yang, Nan & Li, Xueyi & Zhang, Zongjie, 2018. "An integrated systemic method for supply reliability assessment of natural gas pipeline networks," Applied Energy, Elsevier, vol. 209(C), pages 489-501.
    10. Riepin, Iegor & Schmidt, Matthew & Baringo, Luis & Müsgens, Felix, 2022. "Adaptive robust optimization for European strategic gas infrastructure planning," Applied Energy, Elsevier, vol. 324(C).
    11. Eser, P. & Chokani, N. & Abhari, R., 2019. "Impact of Nord Stream 2 and LNG on gas trade and security of supply in the European gas network of 2030," Applied Energy, Elsevier, vol. 238(C), pages 816-830.
    12. Cabrales, Sergio & Valencia, Carlos & Ramírez, Carlos & Ramírez, Andrés & Herrera, Juan & Cadena, Angela, 2022. "Stochastic cost-benefit analysis to assess new infrastructure to improve the reliability of the natural gas supply," Energy, Elsevier, vol. 246(C).
    13. Chen, Qian & Zuo, Lili & Wu, Changchun & Cao, Yankai & Bu, Yaran & Chen, Feng & Sadiq, Rehan, 2021. "Supply reliability assessment of a gas pipeline network under stochastic demands," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    14. Chen, Qian & Zuo, Lili & Wu, Changchun & Bu, Yaran & Lu, Yifei & Huang, Yanfei & Chen, Feng, 2020. "Short-term supply reliability assessment of a gas pipeline system under demand variations," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    15. Berk, Istemi & Schulte, Simon, 2017. "Turkey's Role in Natural Gas - Becoming a Transit Country?," EWI Working Papers 2017-1, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI), revised 27 Jan 2017.
    16. Ruszel, Mariusz, 2020. "The significance of the Baltic Sea Region for natural gas supplies to the V4 countries," Energy Policy, Elsevier, vol. 146(C).
    17. Long Zhang & Wuliyasu Bai, 2020. "Risk Assessment of China’s Natural Gas Importation: A Supply Chain Perspective," SAGE Open, , vol. 10(3), pages 21582440209, July.
    18. Deane, J.P. & Ó Ciaráin, M. & Ó Gallachóir, B.P., 2017. "An integrated gas and electricity model of the EU energy system to examine supply interruptions," Applied Energy, Elsevier, vol. 193(C), pages 479-490.
    19. Zhu, Jianhua & Peng, Yan & Gong, Zhuping & Sun, Yanming & Lai, Chaoan & Wang, Qing & Zhu, Xiaojun & Gan, Zhongxue, 2019. "Dynamic analysis of SNG and PNG supply: The stability and robustness view #," Energy, Elsevier, vol. 185(C), pages 717-729.
    20. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2913-:d:368073. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.