IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2735-d364760.html
   My bibliography  Save this article

Singularly Perturbed Modeling and LQR Controller Design for a Fuel Cell System

Author

Listed:
  • Kliti Kodra

    (Applied Physics Laboratory, The Johns Hopkins University, 11100 Johns Hopkins Road, Laurel, MD 20723, USA)

  • Ningfan Zhong

    (College of Electrical Engineering and Automation, Shandong University of Science & Technology, Qingdao 266510, China)

Abstract

Modeling and control of proton-exchange membrane fuel cells (PEMFC) has become a very popular research topic lately due to the increasing use of renewable energy. Despite this fact, most of the work in the current literature only studies standard dynamical models without taking into consideration possible parasitics such as small gas flow perturbations that could be available in the system. This paper addresses this issue by elaborating on time-scale modeling of an augmented eighteenth-order PEMFC-reformer system via singular perturbation theory. The latter captures time scales that arise in the model due to the presence of small perturbations. Specifically, a novel and efficient algorithm that helps identify the presence of different time-scales is developed. In addition, the method converts an implicit singularly perturbed model into an explicit equivalent where the time-scales are evident. Using this algorithm, a complete singularly perturbed dynamic model of the augmented eighteenth-order PEMFC-reformer system is obtained. Modeling of the PEMFC-reformer system is followed by linear quadratic regulator (LQR) design for the individual time-scales present in the system.

Suggested Citation

  • Kliti Kodra & Ningfan Zhong, 2020. "Singularly Perturbed Modeling and LQR Controller Design for a Fuel Cell System," Energies, MDPI, vol. 13(11), pages 1-20, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2735-:d:364760
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2735/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2735/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaoxiao Meng & Qianggang Wang & Niancheng Zhou & Shuyan Xiao & Yuan Chi, 2018. "Multi-Time Scale Model Order Reduction and Stability Consistency Certification of Inverter-Interfaced DG System in AC Microgrid," Energies, MDPI, vol. 11(1), pages 1-25, January.
    2. Alessandro Serpi & Mario Porru, 2019. "Modelling and Design of Real-Time Energy Management Systems for Fuel Cell/Battery Electric Vehicles," Energies, MDPI, vol. 12(22), pages 1-21, November.
    3. Olfa Tlili & Christine Mansilla & David Frimat & Yannick Perez, 2019. "Hydrogen market penetration feasibility assessment: Mobility and natural gas markets in the US, Europe, China and Japan," Post-Print hal-02265824, HAL.
    4. Lee, Dong-Yeon & Elgowainy, Amgad & Vijayagopal, Ram, 2019. "Well-to-wheel environmental implications of fuel economy targets for hydrogen fuel cell electric buses in the United States," Energy Policy, Elsevier, vol. 128(C), pages 565-583.
    5. Sajid Hussain Qazi & Mohd Wazir Mustafa & Umbrin Sultana & Nayyar Hussain Mirjat & Shakir Ali Soomro & Nadia Rasheed, 2018. "Regulation of Voltage and Frequency in Solid Oxide Fuel Cell-Based Autonomous Microgrids Using the Whales Optimisation Algorithm," Energies, MDPI, vol. 11(5), pages 1-21, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Qiang & Zhang, Bo & Yang, Shichun & Peng, Zhaoxia, 2022. "Life cycle assessment on energy efficiency of hydrogen fuel cell vehicle in China," Energy, Elsevier, vol. 257(C).
    2. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2022. "Greenhouse gas life cycle analysis of China's fuel cell medium- and heavy-duty trucks under segmented usage scenarios and vehicle types," Energy, Elsevier, vol. 249(C).
    3. Xu, Chuanbo & Wu, Yunna & Dai, Shuyu, 2020. "What are the critical barriers to the development of hydrogen refueling stations in China? A modified fuzzy DEMATEL approach," Energy Policy, Elsevier, vol. 142(C).
    4. Yang, Zijun & Wang, Bowen & Jiao, Kui, 2020. "Life cycle assessment of fuel cell, electric and internal combustion engine vehicles under different fuel scenarios and driving mileages in China," Energy, Elsevier, vol. 198(C).
    5. Vitor Caldeirinha & J. Augusto Felício & Tiago Pinho, 2023. "Role of Cargo Owner in Logistic Chain Sustainability," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    6. Guido Ala & Gabriella Di Filippo & Fabio Viola & Graziella Giglia & Antonino Imburgia & Pietro Romano & Vincenzo Castiglia & Filippo Pellitteri & Giuseppe Schettino & Rosario Miceli, 2020. "Different Scenarios of Electric Mobility: Current Situation and Possible Future Developments of Fuel Cell Vehicles in Italy," Sustainability, MDPI, vol. 12(2), pages 1-22, January.
    7. Ching-Ming Lai & Jiashen Teh & Yuan-Chih Lin & Yitao Liu, 2020. "Study of a Bidirectional Power Converter Integrated with Battery/Ultracapacitor Dual-Energy Storage," Energies, MDPI, vol. 13(5), pages 1-23, March.
    8. Hensher, David A., 2021. "The case for negotiated contracts under the transition to a green bus fleet," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 255-269.
    9. Sheng, Mingyue Selena & Sreenivasan, Ajith Viswanath & Sharp, Basil & Du, Bo, 2021. "Well-to-wheel analysis of greenhouse gas emissions and energy consumption for electric vehicles: A comparative study in Oceania," Energy Policy, Elsevier, vol. 158(C).
    10. Adriano Ceschia & Toufik Azib & Olivier Bethoux & Francisco Alves, 2020. "Optimal Sizing of Fuel Cell Hybrid Power Sources with Reliability Consideration," Energies, MDPI, vol. 13(13), pages 1-18, July.
    11. Tan, Xiaoqiang & Li, Chaoshun & Liu, Dong & Wang, He & Xu, Rongli & Lu, Xueding & Zhu, Zhiwei, 2023. "Multi-time scale model reduction strategy of variable-speed pumped storage unit grid-connected system for small-signal oscillation stability analysis," Renewable Energy, Elsevier, vol. 211(C), pages 985-1009.
    12. Isaac, N. & Saha, A.K., 2021. "Analysis of refueling behavior of hydrogen fuel vehicles through a stochastic model using Markov Chain Process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    13. Touqeer Ahmed Jumani & Mohd Wazir Mustafa & Madihah Md Rasid & Nayyar Hussain Mirjat & Zohaib Hussain Leghari & M. Salman Saeed, 2018. "Optimal Voltage and Frequency Control of an Islanded Microgrid Using Grasshopper Optimization Algorithm," Energies, MDPI, vol. 11(11), pages 1-20, November.
    14. Burandt, Thorsten, 2021. "Analyzing the necessity of hydrogen imports for net-zero emission scenarios in Japan," Applied Energy, Elsevier, vol. 298(C).
    15. Oliwia Pietrzak & Krystian Pietrzak, 2021. "The Economic Effects of Electromobility in Sustainable Urban Public Transport," Energies, MDPI, vol. 14(4), pages 1-28, February.
    16. Tang, Ou & Rehme, Jakob & Cerin, Pontus & Huisingh, Donald, 2021. "Hydrogen production in the Swedish power sector: Considering operational volatilities and long-term uncertainties," Energy Policy, Elsevier, vol. 148(PB).
    17. Maulén, Lucas & Castro, Margarita & Lorca, Álvaro & Negrete-Pincetic, Matías, 2023. "Optimization-based expansion planning for power and hydrogen systems with feedback from a unit commitment model," Applied Energy, Elsevier, vol. 343(C).
    18. Gino D’Ovidio & Antonio Ometto & Carlo Villante, 2020. "A Novel Optimal Power Control for a City Transit Hybrid Bus Equipped with a Partitioned Hydrogen Fuel Cell Stack," Energies, MDPI, vol. 13(11), pages 1-15, May.
    19. Anshuman Chaube & Andrew Chapman & Yosuke Shigetomi & Kathryn Huff & James Stubbins, 2020. "The Role of Hydrogen in Achieving Long Term Japanese Energy System Goals," Energies, MDPI, vol. 13(17), pages 1-17, September.
    20. Wen Sun & Juncai Rong & Junnian Wang & Wentong Zhang & Zidong Zhou, 2021. "Research on Optimal Torque Control of Turning Energy Consumption for EVs with Motorized Wheels," Energies, MDPI, vol. 14(21), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2735-:d:364760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.