IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i5p804-d209860.html
   My bibliography  Save this article

Technology Roadmap for Eco-Friendly Building Materials Industry

Author

Listed:
  • Hyunsook Shim

    (Pium Innovation co., Ltd., 37, Hwangsaeul-ro 258, Bundang-gu, Seongnam-si, Gyeonggi-do 13595, Korea)

  • Taeyeon Kim

    (Department of Architectural Engineering, Yonsei University, Seoul 03722, Korea)

  • Gyunghyun Choi

    (Graduate School of Technology and Innovation Management, Hanyang University, Seoul 04763, Korea)

Abstract

As quality of life has improved, the need for high-performance building materials that meet specific technological requirements has increased. Residential environments have also changed owing to climate change. A technology roadmap could define and systematically reflect a timeline for the development of future core technologies. The purpose of this research is to build a technology roadmap that could be utilized for the development of technology in the eco-friendly building material industry. This research is composed of multiple analysis processes—patent analysis, Delphi, and analytic hierarchy process analysis—that minimize the uncertainty caused by the lack of information in the eco-friendly construction industry by securing objective future forecast data. Subsequently, the quality function deployment test is implemented to verify the feasibility of the technology roadmap that is constructed. The design of various types of functional, low-carbon building materials could reduce carbon emissions and save energy by ensuring a hazardous-material-free market in the future. This design development roadmap is required to complement this technology roadmap.

Suggested Citation

  • Hyunsook Shim & Taeyeon Kim & Gyunghyun Choi, 2019. "Technology Roadmap for Eco-Friendly Building Materials Industry," Energies, MDPI, vol. 12(5), pages 1-14, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:804-:d:209860
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/5/804/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/5/804/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lu, Hsi-Peng & Weng, Chien-I, 2018. "Smart manufacturing technology, market maturity analysis and technology roadmap in the computer and electronic product manufacturing industry," Technological Forecasting and Social Change, Elsevier, vol. 133(C), pages 85-94.
    2. N. Gerdsri, 2007. "An Analytical Approach To Building A Technology Development Envelope (Tde) For Roadmapping Of Emerging Technologies," International Journal of Innovation and Technology Management (IJITM), World Scientific Publishing Co. Pte. Ltd., vol. 4(02), pages 121-135.
    3. Cowan, Kelly R. & Daim, Turgrul, 2009. "Comparative technological road-mapping for renewable energy," Technology in Society, Elsevier, vol. 31(4), pages 333-341.
    4. Ju, Yonghan & Sohn, So Young, 2015. "Patent-based QFD framework development for identification of emerging technologies and related business models: A case of robot technology in Korea," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 44-64.
    5. Domenico Campisi & Simone Gitto & Donato Morea, 2018. "An Evaluation of Energy and Economic Efficiency in Residential Buildings Sector: A Multi-criteria Analisys on an Italian Case Study," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 185-196.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noh, Heeyong & Kim, Kyuwoong & Song, Young-Keun & Lee, Sungjoo, 2021. "Opportunity-driven technology roadmapping: The case of 5G mobile services," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    2. Gilberto Santos & Jose Carlos Sá & Maria João Félix & Luís Barreto & Filipe Carvalho & Manuel Doiro & Kristína Zgodavová & Miladin Stefanović, 2021. "New Needed Quality Management Skills for Quality Managers 4.0," Sustainability, MDPI, vol. 13(11), pages 1-22, May.
    3. Hao Cai & Ling Liang & Jing Tang & Qianxian Wang & Lihong Wei & Jiaping Xie, 2019. "An Empirical Study on the Efficiency and Influencing Factors of the Photovoltaic Industry in China and an Analysis of Its Influencing Factors," Sustainability, MDPI, vol. 11(23), pages 1-22, November.
    4. Cowan, Kelly R. & Daim, Tugrul U., 2011. "Review of technology acquisition and adoption research in the energy sector," Technology in Society, Elsevier, vol. 33(3), pages 183-199.
    5. de Alcantara, Douglas Pedro & Martens, Mauro Luiz, 2019. "Technology Roadmapping (TRM): a systematic review of the literature focusing on models," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 127-138.
    6. Dincbas, Tugba & Ergeneli, Azize & Yigitbasioglu, Hakan, 2021. "Clean technology adoption in the context of climate change: Application in the mineral products industry," Technology in Society, Elsevier, vol. 64(C).
    7. Yun Liu & Zhe Yan & Yijie Cheng & Xuanting Ye, 2018. "Exploring the Technological Collaboration Characteristics of the Global Integrated Circuit Manufacturing Industry," Sustainability, MDPI, vol. 10(1), pages 1-23, January.
    8. Alina Zaharia & Maria Claudia Diaconeasa & Laura Brad & Georgiana-Raluca Lădaru & Corina Ioanăș, 2019. "Factors Influencing Energy Consumption in the Context of Sustainable Development," Sustainability, MDPI, vol. 11(15), pages 1-28, August.
    9. Yu, Shiwei & Zhou, Shuangshuang & Zheng, Shuhong & Li, Zhenxi & Liu, Lancui, 2019. "Developing an optimal renewable electricity generation mix for China using a fuzzy multi-objective approach," Renewable Energy, Elsevier, vol. 139(C), pages 1086-1098.
    10. Daim, Tugrul U. & Yoon, Byung-Sung & Lindenberg, John & Grizzi, Robert & Estep, Judith & Oliver, Terry, 2018. "Strategic roadmapping of robotics technologies for the power industry: A multicriteria technology assessment," Technological Forecasting and Social Change, Elsevier, vol. 131(C), pages 49-66.
    11. Moncef Krarti, 2019. "Evaluation of Energy Efficiency Potential for the Building Sector in the Arab Region," Energies, MDPI, vol. 12(22), pages 1-45, November.
    12. Sumera Ahmad & Suraya Miskon & Rana Alabdan & Iskander Tlili, 2020. "Towards Sustainable Textile and Apparel Industry: Exploring the Role of Business Intelligence Systems in the Era of Industry 4.0," Sustainability, MDPI, vol. 12(7), pages 1-23, March.
    13. Lee, Hyunmin, 2023. "Strategic similarity in the co-evolution of technological and business diversification for firm growth: Evidence from smart-manufacturing related firms," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    14. Ehsan Sorooshnia & Payam Rahnamayiezekavat & Maria Rashidi & Mahsan Sadeghi & Bijan Samali, 2023. "Curve Optimization for the Anidolic Daylight System Counterbalancing Energy Saving, Indoor Visual and Thermal Comfort for Sydney Dwellings," Energies, MDPI, vol. 16(3), pages 1-30, January.
    15. Noh, Heeyong & Song, Young-Keun & Lee, Sungjoo, 2016. "Identifying emerging core technologies for the future: Case study of patents published by leading telecommunication organizations," Telecommunications Policy, Elsevier, vol. 40(10), pages 956-970.
    16. Nordensvard, Johan & Zhou, Yuan & Zhang, Xiao, 2018. "Innovation core, innovation semi-periphery and technology transfer: The case of wind energy patents," Energy Policy, Elsevier, vol. 120(C), pages 213-227.
    17. Lee, Hyunmin, 2023. "Converging technology to improve firm innovation competencies and business performance: Evidence from smart manufacturing technologies," Technovation, Elsevier, vol. 123(C).
    18. Bader Alshuraiaan, 2021. "Renewable Energy Technologies for Energy Efficient Buildings: The Case of Kuwait," Energies, MDPI, vol. 14(15), pages 1-16, July.
    19. Culot, Giovanna & Orzes, Guido & Sartor, Marco & Nassimbeni, Guido, 2020. "The future of manufacturing: A Delphi-based scenario analysis on Industry 4.0," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    20. Marco Savastano & Carlo Amendola & Francesco Bellini & Fabrizio D’Ascenzo, 2019. "Contextual Impacts on Industrial Processes Brought by the Digital Transformation of Manufacturing: A Systematic Review," Sustainability, MDPI, vol. 11(3), pages 1-38, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:804-:d:209860. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.