IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i4p714-d208145.html
   My bibliography  Save this article

Novel Yeast Strains for the Efficient Saccharification and Fermentation of Starchy By-Products to Bioethanol

Author

Listed:
  • Nicoletta Gronchi

    (Department of Agronomy, Food, Natural resources, Animals and the Environment (DAFNAE), University of Padova, Agripolis, 35020 Legnaro (PD), Italy)

  • Lorenzo Favaro

    (Department of Agronomy, Food, Natural resources, Animals and the Environment (DAFNAE), University of Padova, Agripolis, 35020 Legnaro (PD), Italy)

  • Lorenzo Cagnin

    (Department of Agronomy, Food, Natural resources, Animals and the Environment (DAFNAE), University of Padova, Agripolis, 35020 Legnaro (PD), Italy)

  • Silvia Brojanigo

    (Department of Agronomy, Food, Natural resources, Animals and the Environment (DAFNAE), University of Padova, Agripolis, 35020 Legnaro (PD), Italy)

  • Valentino Pizzocchero

    (Department of Agronomy, Food, Natural resources, Animals and the Environment (DAFNAE), University of Padova, Agripolis, 35020 Legnaro (PD), Italy)

  • Marina Basaglia

    (Department of Agronomy, Food, Natural resources, Animals and the Environment (DAFNAE), University of Padova, Agripolis, 35020 Legnaro (PD), Italy)

  • Sergio Casella

    (Department of Agronomy, Food, Natural resources, Animals and the Environment (DAFNAE), University of Padova, Agripolis, 35020 Legnaro (PD), Italy)

Abstract

The use of solid starchy waste streams to produce value-added products, such as fuel ethanol, is a priority for the global bio-based economy. Despite technological advances, bioethanol production from starch is still not economically competitive. Large cost-savings can be achieved through process integration (consolidated bioprocessing, CBP) and new amylolytic microbes that are able to directly convert starchy biomass into fuel in a single bioreactor. Firstly, CBP technology requires efficient fermenting yeast strains to be engineered for amylase(s) production. This study addressed the selection of superior yeast strains with high fermentative performances to be used as recipient for future CBP engineering of fungal amylases. Twenty-one newly isolated wild-type Saccharomyces cerevisiae strains were screened at 30 °C in a simultaneous saccharification and fermentation (SSF) set up using starchy substrates at high loading (20% w/v) and the commercial amylases cocktail STARGEN™ 002. The industrial yeast Ethanol Red™ was used as benchmark. A cluster of strains produced ethanol levels (up to 118 g/L) significantly higher than those of Ethanol Red™ (about 109 g/L). In particular, S. cerevisiae L20, selected for a scale-up process into a 1-L bioreactor, confirmed the outstanding performance over the industrial benchmark, producing nearly 101 g/L ethanol instead of 94 g/L. As a result, this strain can be a promising CBP host for heterologous expression of fungal amylases towards the design of novel and efficient starch-to-ethanol routes.

Suggested Citation

  • Nicoletta Gronchi & Lorenzo Favaro & Lorenzo Cagnin & Silvia Brojanigo & Valentino Pizzocchero & Marina Basaglia & Sergio Casella, 2019. "Novel Yeast Strains for the Efficient Saccharification and Fermentation of Starchy By-Products to Bioethanol," Energies, MDPI, vol. 12(4), pages 1-13, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:714-:d:208145
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/4/714/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/4/714/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aditiya, H.B. & Mahlia, T.M.I. & Chong, W.T. & Nur, Hadi & Sebayang, A.H., 2016. "Second generation bioethanol production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 631-653.
    2. Cripwell, Rosemary & Favaro, Lorenzo & Rose, Shaunita H. & Basaglia, Marina & Cagnin, Lorenzo & Casella, Sergio & van Zyl, Willem, 2015. "Utilisation of wheat bran as a substrate for bioethanol production using recombinant cellulases and amylolytic yeast," Applied Energy, Elsevier, vol. 160(C), pages 610-617.
    3. Mikael Lantz & Thomas Prade & Serina Ahlgren & Lovisa Björnsson, 2018. "Biogas and Ethanol from Wheat Grain or Straw: Is There a Trade-Off between Climate Impact, Avoidance of iLUC and Production Cost?," Energies, MDPI, vol. 11(10), pages 1-31, October.
    4. Gupta, Anubhuti & Verma, Jay Prakash, 2015. "Sustainable bio-ethanol production from agro-residues: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 550-567.
    5. Na Duan & Xia Ran & Ruirui Li & Panagiotis G. Kougias & Yuanhui Zhang & Cong Lin & Hongbin Liu, 2018. "Performance Evaluation of Mesophilic Anaerobic Digestion of Chicken Manure with Algal Digestate," Energies, MDPI, vol. 11(7), pages 1-11, July.
    6. Edgar Olguin-Maciel & Alfonso Larqué-Saavedra & Daisy Pérez-Brito & Luis F. Barahona-Pérez & Liliana Alzate-Gaviria & Tanit Toledano-Thompson & Patricia E. Lappe-Oliveras & Emy G. Huchin-Poot & Raúl T, 2017. "Brosimum Alicastrum as a Novel Starch Source for Bioethanol Production," Energies, MDPI, vol. 10(10), pages 1-10, October.
    7. Alessandra Cesaro & Vincenzo Belgiorno, 2015. "Combined Biogas and Bioethanol Production: Opportunities and Challenges for Industrial Application," Energies, MDPI, vol. 8(8), pages 1-24, August.
    8. He, Lei-Yu & Zhao, Xin-Qing & Bai, Feng-Wu, 2012. "Engineering industrial Saccharomyces cerevisiae strain with the FLO1-derivative gene isolated from the flocculating yeast SPSC01 for constitutive flocculation and fuel ethanol production," Applied Energy, Elsevier, vol. 100(C), pages 33-40.
    9. Deborah Bentivoglio & Adele Finco & Mirian Rumenos Piedade Bacchi, 2016. "Interdependencies between Biofuel, Fuel and Food Prices: The Case of the Brazilian Ethanol Market," Energies, MDPI, vol. 9(6), pages 1-16, June.
    10. Favaro, Lorenzo & Basaglia, Marina & van Zyl, Willem H. & Casella, Sergio, 2013. "Using an efficient fermenting yeast enhances ethanol production from unfiltered wheat bran hydrolysates," Applied Energy, Elsevier, vol. 102(C), pages 170-178.
    11. Christos Nitsos & Ulrika Rova & Paul Christakopoulos, 2017. "Organosolv Fractionation of Softwood Biomass for Biofuel and Biorefinery Applications," Energies, MDPI, vol. 11(1), pages 1-23, December.
    12. Sarocha Pradyawong & Ankita Juneja & Muhammad Bilal Sadiq & Athapol Noomhorm & Vijay Singh, 2018. "Comparison of Cassava Starch with Corn as a Feedstock for Bioethanol Production," Energies, MDPI, vol. 11(12), pages 1-11, December.
    13. Zabed, H. & Sahu, J.N. & Suely, A. & Boyce, A.N. & Faruq, G., 2017. "Bioethanol production from renewable sources: Current perspectives and technological progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 475-501.
    14. Richard Ahorsu & Francesc Medina & Magda Constantí, 2018. "Significance and Challenges of Biomass as a Suitable Feedstock for Bioenergy and Biochemical Production: A Review," Energies, MDPI, vol. 11(12), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Y.H. Teoh & K.H. Yu & H.G. How & H.-T. Nguyen, 2019. "Experimental Investigation of Performance, Emission and Combustion Characteristics of a Common-Rail Diesel Engine Fuelled with Bioethanol as a Fuel Additive in Coconut Oil Biodiesel Blends," Energies, MDPI, vol. 12(10), pages 1-17, May.
    2. Rosen, Yan & Mamane, Hadas & Gerchman, Yoram, 2021. "Immersed ozonation of agro-wastes as an effective pretreatment method in bioethanol production," Renewable Energy, Elsevier, vol. 174(C), pages 382-390.
    3. Gupte, Ameya Pankaj & Basaglia, Marina & Casella, Sergio & Favaro, Lorenzo, 2022. "Rice waste streams as a promising source of biofuels: feedstocks, biotechnologies and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Rezania, Shahabaldin & Oryani, Bahareh & Cho, Jinwoo & Talaiekhozani, Amirreza & Sabbagh, Farzaneh & Hashemi, Beshare & Rupani, Parveen Fatemeh & Mohammadi, Ali Akbar, 2020. "Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview," Energy, Elsevier, vol. 199(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Holmatov, B. & Schyns, J.F. & Krol, M.S. & Gerbens-Leenes, P.W. & Hoekstra, A.Y., 2021. "Can crop residues provide fuel for future transport? Limited global residue bioethanol potentials and large associated land, water and carbon footprints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    2. Rodica Niculescu & Adrian Clenci & Victor Iorga-Siman, 2019. "Review on the Use of Diesel–Biodiesel–Alcohol Blends in Compression Ignition Engines," Energies, MDPI, vol. 12(7), pages 1-41, March.
    3. Carrillo-Nieves, Danay & Rostro Alanís, Magdalena J. & de la Cruz Quiroz, Reynaldo & Ruiz, Héctor A. & Iqbal, Hafiz M.N. & Parra-Saldívar, Roberto, 2019. "Current status and future trends of bioethanol production from agro-industrial wastes in Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 63-74.
    4. Holmatov, B. & Hoekstra, A.Y. & Krol, M.S., 2019. "Land, water and carbon footprints of circular bioenergy production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 224-235.
    5. Alberto Benato & Alarico Macor, 2019. "Italian Biogas Plants: Trend, Subsidies, Cost, Biogas Composition and Engine Emissions," Energies, MDPI, vol. 12(6), pages 1-31, March.
    6. Rooni, Vahur & Raud, Merlin & Kikas, Timo, 2017. "The freezing pre-treatment of lignocellulosic material: A cheap alternative for Nordic countries," Energy, Elsevier, vol. 139(C), pages 1-7.
    7. Bechara, Rami & Gomez, Adrien & Saint-Antonin, Valérie & Schweitzer, Jean-Marc & Maréchal, François & Ensinas, Adriano, 2018. "Review of design works for the conversion of sugarcane to first and second-generation ethanol and electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 152-164.
    8. Anu, & Kumar, Anil & Rapoport, Alexander & Kunze, Gotthard & Kumar, Sanjeev & Singh, Davender & Singh, Bijender, 2020. "Multifarious pretreatment strategies for the lignocellulosic substrates for the generation of renewable and sustainable biofuels: A review," Renewable Energy, Elsevier, vol. 160(C), pages 1228-1252.
    9. Omojola Awogbemi & Daramy Vandi Von Kallon & Emmanuel Idoko Onuh & Victor Sunday Aigbodion, 2021. "An Overview of the Classification, Production and Utilization of Biofuels for Internal Combustion Engine Applications," Energies, MDPI, vol. 14(18), pages 1-43, September.
    10. Chen, Jiaxin & Zhang, Biying & Luo, Lingli & Zhang, Fan & Yi, Yanglei & Shan, Yuanyuan & Liu, Bianfang & Zhou, Yuan & Wang, Xin & Lü, Xin, 2021. "A review on recycling techniques for bioethanol production from lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    11. Alizadeh, Reza & Lund, Peter D. & Soltanisehat, Leili, 2020. "Outlook on biofuels in future studies: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    12. Cheng, F. & Brewer, C.E., 2021. "Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis + fermentation and anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    13. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Awad, Faisal N. & Qi, Xianghui & Sahu, J.N., 2019. "Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 105-128.
    14. Rezania, Shahabaldin & Oryani, Bahareh & Cho, Jinwoo & Talaiekhozani, Amirreza & Sabbagh, Farzaneh & Hashemi, Beshare & Rupani, Parveen Fatemeh & Mohammadi, Ali Akbar, 2020. "Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview," Energy, Elsevier, vol. 199(C).
    15. Melendez, Jesus R. & Mátyás, Bence & Hena, Sufia & Lowy, Daniel A. & El Salous, Ahmed, 2022. "Perspectives in the production of bioethanol: A review of sustainable methods, technologies, and bioprocesses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    16. Shah, A.T. & Favaro, L. & Alibardi, L. & Cagnin, L. & Sandon, A. & Cossu, R. & Casella, S. & Basaglia, M., 2016. "Bacillus sp. strains to produce bio-hydrogen from the organic fraction of municipal solid waste," Applied Energy, Elsevier, vol. 176(C), pages 116-124.
    17. Spyridon Achinas & Johan Horjus & Vasileios Achinas & Gerrit Jan Willem Euverink, 2019. "A PESTLE Analysis of Biofuels Energy Industry in Europe," Sustainability, MDPI, vol. 11(21), pages 1-24, October.
    18. Ezeilo, Uchenna R. & Wahab, Roswanira Abdul & Mahat, Naji Arafat, 2020. "Optimization studies on cellulase and xylanase production by Rhizopus oryzae UC2 using raw oil palm frond leaves as substrate under solid state fermentation," Renewable Energy, Elsevier, vol. 156(C), pages 1301-1312.
    19. Danilo Arcentales-Bastidas & Carla Silva & Angel D. Ramirez, 2022. "The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex," Energies, MDPI, vol. 15(15), pages 1-24, July.
    20. Andrea Patané & Giorgio Jansen & Piero Conca & Giovanni Carapezza & Jole Costanza & Giuseppe Nicosia, 2019. "Multi-objective optimization of genome-scale metabolic models: the case of ethanol production," Annals of Operations Research, Springer, vol. 276(1), pages 211-227, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:714-:d:208145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.