IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i1p159-d194629.html
   My bibliography  Save this article

Probabilistic Wind Power Forecasting Approach via Instance-Based Transfer Learning Embedded Gradient Boosting Decision Trees

Author

Listed:
  • Long Cai

    (School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Jie Gu

    (School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Jinghuan Ma

    (School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Zhijian Jin

    (School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

Abstract

With the high wind penetration in the power system, accurate and reliable probabilistic wind power forecasting has become even more significant for the reliability of the power system. In this paper, an instance-based transfer learning method combined with gradient boosting decision trees (GBDT) is proposed to develop a wind power quantile regression model. Based on the spatial cross-correlation characteristic of wind power generations in different zones, the proposed model utilizes wind power generations in correlated zones as the source problems of instance-based transfer learning. By incorporating the training data of source problems into the training process, the proposed model successfully reduces the prediction error of wind power generation in the target zone. To prevent negative transfer, this paper proposes a method that properly assigns weights to data from different source problems in the training process, whereby the weights of related source problems are increased, while those of unrelated ones are reduced. Case studies are developed based on the dataset from the Global Energy Forecasting Competition 2014 (GEFCom2014). The results confirm that the proposed model successfully improves the prediction accuracy compared to GBDT-based benchmark models, especially when the target problem has a small training set while resourceful source problems are available.

Suggested Citation

  • Long Cai & Jie Gu & Jinghuan Ma & Zhijian Jin, 2019. "Probabilistic Wind Power Forecasting Approach via Instance-Based Transfer Learning Embedded Gradient Boosting Decision Trees," Energies, MDPI, vol. 12(1), pages 1-19, January.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:1:p:159-:d:194629
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/1/159/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/1/159/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Antonio Bracale & Pasquale De Falco, 2015. "An Advanced Bayesian Method for Short-Term Probabilistic Forecasting of the Generation of Wind Power," Energies, MDPI, vol. 8(9), pages 1-22, September.
    2. Kenneth Bruninx & Erik Delarue & William D'haeseleer, 2013. "Statistical description of the error on wind power forecasts via a Lévy α-stable distribution," RSCAS Working Papers 2013/50, European University Institute.
    3. Landry, Mark & Erlinger, Thomas P. & Patschke, David & Varrichio, Craig, 2016. "Probabilistic gradient boosting machines for GEFCom2014 wind forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1061-1066.
    4. P. Pinson, 2012. "Very-short-term probabilistic forecasting of wind power with generalized logit–normal distributions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 61(4), pages 555-576, August.
    5. Hong, Tao & Pinson, Pierre & Fan, Shu & Zareipour, Hamidreza & Troccoli, Alberto & Hyndman, Rob J., 2016. "Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond," International Journal of Forecasting, Elsevier, vol. 32(3), pages 896-913.
    6. Jooyoung Jeon & James W. Taylor, 2012. "Using Conditional Kernel Density Estimation for Wind Power Density Forecasting," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 66-79, March.
    7. Alham, M.H. & Elshahed, M. & Ibrahim, Doaa Khalil & Abo El Zahab, Essam El Din, 2016. "A dynamic economic emission dispatch considering wind power uncertainty incorporating energy storage system and demand side management," Renewable Energy, Elsevier, vol. 96(PA), pages 800-811.
    8. Taylor, James W. & Jeon, Jooyoung, 2015. "Forecasting wind power quantiles using conditional kernel estimation," Renewable Energy, Elsevier, vol. 80(C), pages 370-379.
    9. Li Han & Rongchang Zhang & Xuesong Wang & Yu Dong, 2018. "Multi-Time Scale Rolling Economic Dispatch for Wind/Storage Power System Based on Forecast Error Feature Extraction," Energies, MDPI, vol. 11(8), pages 1-27, August.
    10. Nagy, Gábor I. & Barta, Gergő & Kazi, Sándor & Borbély, Gyula & Simon, Gábor, 2016. "GEFCom2014: Probabilistic solar and wind power forecasting using a generalized additive tree ensemble approach," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1087-1093.
    11. Juban, Romain & Ohlsson, Henrik & Maasoumy, Mehdi & Poirier, Louis & Kolter, J. Zico, 2016. "A multiple quantile regression approach to the wind, solar, and price tracks of GEFCom2014," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1094-1102.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mengting Yao & Yun Zhu & Junjie Li & Hua Wei & Penghui He, 2019. "Research on Predicting Line Loss Rate in Low Voltage Distribution Network Based on Gradient Boosting Decision Tree," Energies, MDPI, vol. 12(13), pages 1-14, June.
    2. Evangelos Spiliotis & Fotios Petropoulos & Konstantinos Nikolopoulos, 2020. "The Impact of Imperfect Weather Forecasts on Wind Power Forecasting Performance: Evidence from Two Wind Farms in Greece," Energies, MDPI, vol. 13(8), pages 1-18, April.
    3. Obst, David & Ghattas, Badih & Claudel, Sandra & Cugliari, Jairo & Goude, Yannig & Oppenheim, Georges, 2022. "Improved linear regression prediction by transfer learning," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    4. Marcin Blachnik & Sławomir Walkowiak & Adam Kula, 2023. "Large Scale, Mid Term Wind Farms Power Generation Prediction," Energies, MDPI, vol. 16(5), pages 1-15, March.
    5. Rami Al-Hajj & Ali Assi & Bilel Neji & Raymond Ghandour & Zaher Al Barakeh, 2023. "Transfer Learning for Renewable Energy Systems: A Survey," Sustainability, MDPI, vol. 15(11), pages 1-28, June.
    6. Liu, Yanli & Wang, Junyi, 2022. "Transfer learning based multi-layer extreme learning machine for probabilistic wind power forecasting," Applied Energy, Elsevier, vol. 312(C).
    7. Lv, Jiaqing & Zheng, Xiaodong & Pawlak, Mirosław & Mo, Weike & Miśkowicz, Marek, 2021. "Very short-term probabilistic wind power prediction using sparse machine learning and nonparametric density estimation algorithms," Renewable Energy, Elsevier, vol. 177(C), pages 181-192.
    8. Honghai Niu & Yu Yang & Lingchao Zeng & Yiguo Li, 2021. "ELM-QR-Based Nonparametric Probabilistic Prediction Method for Wind Power," Energies, MDPI, vol. 14(3), pages 1-15, January.
    9. Dalton, Amaris & Bekker, Bernard, 2022. "Exogenous atmospheric variables as wind speed predictors in machine learning," Applied Energy, Elsevier, vol. 319(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gallego-Castillo, Cristobal & Bessa, Ricardo & Cavalcante, Laura & Lopez-Garcia, Oscar, 2016. "On-line quantile regression in the RKHS (Reproducing Kernel Hilbert Space) for operational probabilistic forecasting of wind power," Energy, Elsevier, vol. 113(C), pages 355-365.
    2. González Ordiano, Jorge Ángel & Gröll, Lutz & Mikut, Ralf & Hagenmeyer, Veit, 2020. "Probabilistic energy forecasting using the nearest neighbors quantile filter and quantile regression," International Journal of Forecasting, Elsevier, vol. 36(2), pages 310-323.
    3. Lv, Jiaqing & Zheng, Xiaodong & Pawlak, Mirosław & Mo, Weike & Miśkowicz, Marek, 2021. "Very short-term probabilistic wind power prediction using sparse machine learning and nonparametric density estimation algorithms," Renewable Energy, Elsevier, vol. 177(C), pages 181-192.
    4. Müller, Alfred & Reuber, Matthias, 2023. "A copula-based time series model for global horizontal irradiation," International Journal of Forecasting, Elsevier, vol. 39(2), pages 869-883.
    5. Zhang, Wenjie & Quan, Hao & Srinivasan, Dipti, 2018. "Parallel and reliable probabilistic load forecasting via quantile regression forest and quantile determination," Energy, Elsevier, vol. 160(C), pages 810-819.
    6. Luis Mazorra-Aguiar & Philippe Lauret & Mathieu David & Albert Oliver & Gustavo Montero, 2021. "Comparison of Two Solar Probabilistic Forecasting Methodologies for Microgrids Energy Efficiency," Energies, MDPI, vol. 14(6), pages 1-26, March.
    7. Tawn, R. & Browell, J., 2022. "A review of very short-term wind and solar power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    8. Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    9. David, Mathieu & Luis, Mazorra Aguiar & Lauret, Philippe, 2018. "Comparison of intraday probabilistic forecasting of solar irradiance using only endogenous data," International Journal of Forecasting, Elsevier, vol. 34(3), pages 529-547.
    10. Ricardo J. Bessa & Corinna Möhrlen & Vanessa Fundel & Malte Siefert & Jethro Browell & Sebastian Haglund El Gaidi & Bri-Mathias Hodge & Umit Cali & George Kariniotakis, 2017. "Towards Improved Understanding of the Applicability of Uncertainty Forecasts in the Electric Power Industry," Energies, MDPI, vol. 10(9), pages 1-48, September.
    11. Ambach, Daniel & Schmid, Wolfgang, 2017. "A new high-dimensional time series approach for wind speed, wind direction and air pressure forecasting," Energy, Elsevier, vol. 135(C), pages 833-850.
    12. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    13. González-Ordiano, Jorge Ángel & Mühlpfordt, Tillmann & Braun, Eric & Liu, Jianlei & Çakmak, Hüseyin & Kühnapfel, Uwe & Düpmeier, Clemens & Waczowicz, Simon & Faulwasser, Timm & Mikut, Ralf & Hagenmeye, 2021. "Probabilistic forecasts of the distribution grid state using data-driven forecasts and probabilistic power flow," Applied Energy, Elsevier, vol. 302(C).
    14. Antonio Bracale & Pasquale De Falco, 2015. "An Advanced Bayesian Method for Short-Term Probabilistic Forecasting of the Generation of Wind Power," Energies, MDPI, vol. 8(9), pages 1-22, September.
    15. Sun, Mucun & Feng, Cong & Zhang, Jie, 2020. "Multi-distribution ensemble probabilistic wind power forecasting," Renewable Energy, Elsevier, vol. 148(C), pages 135-149.
    16. Filipe Soares & André Madureira & Andreu Pagès & António Barbosa & António Coelho & Fernando Cassola & Fernando Ribeiro & João Viana & José Andrade & Marina Dorokhova & Nélson Morais & Nicolas Wyrsch , 2021. "FEEdBACk: An ICT-Based Platform to Increase Energy Efficiency through Buildings’ Consumer Engagement," Energies, MDPI, vol. 14(6), pages 1-43, March.
    17. Upma Singh & Mohammad Rizwan & Muhannad Alaraj & Ibrahim Alsaidan, 2021. "A Machine Learning-Based Gradient Boosting Regression Approach for Wind Power Production Forecasting: A Step towards Smart Grid Environments," Energies, MDPI, vol. 14(16), pages 1-21, August.
    18. Croonenbroeck, Carsten & Stadtmann, Georg, 2019. "Renewable generation forecast studies – Review and good practice guidance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 312-322.
    19. He, Yaoyao & Cao, Chaojin & Wang, Shuo & Fu, Hong, 2022. "Nonparametric probabilistic load forecasting based on quantile combination in electrical power systems," Applied Energy, Elsevier, vol. 322(C).
    20. Gensler, André & Sick, Bernhard & Vogt, Stephan, 2018. "A review of uncertainty representations and metaverification of uncertainty assessment techniques for renewable energies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 352-379.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:1:p:159-:d:194629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.