IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i13p2522-d244568.html
   My bibliography  Save this article

Research on Predicting Line Loss Rate in Low Voltage Distribution Network Based on Gradient Boosting Decision Tree

Author

Listed:
  • Mengting Yao

    (Guangxi Key Laboratory of Power System Optimization and Energy Technology, Guangxi University, Nanning 530004, China)

  • Yun Zhu

    (Guangxi Key Laboratory of Power System Optimization and Energy Technology, Guangxi University, Nanning 530004, China)

  • Junjie Li

    (Guangxi Key Laboratory of Power System Optimization and Energy Technology, Guangxi University, Nanning 530004, China)

  • Hua Wei

    (Guangxi Key Laboratory of Power System Optimization and Energy Technology, Guangxi University, Nanning 530004, China)

  • Penghui He

    (Guangxi Key Laboratory of Power System Optimization and Energy Technology, Guangxi University, Nanning 530004, China)

Abstract

Line loss rate plays an essential role in evaluating the economic operation of power systems. However, in a low voltage (LV) distribution network, calculating line loss rate has become more cumbersome due to poor configuration of the measuring and detecting device, the difficulty in collecting operational data, and the excessive number of components and nodes. Most previous studies mainly focused on the approaches to calculate or predict line loss rate, but rarely involve the evaluation of the prediction results. In this paper, we propose an approach based on a gradient boosting decision tree (GBDT), to predict line loss rate. GBDT inherits the advantages of both statistical models and AI approaches, and can identify the complex and nonlinear relationship while computing the relative importance among variables. An empirical study on a data set in a city demonstrates that our proposed approach performs well in predicting line loss rate, given a large number of unlabeled examples. Experiments and analysis also confirmed the effectiveness of our proposed approach in anomaly detection and practical project management.

Suggested Citation

  • Mengting Yao & Yun Zhu & Junjie Li & Hua Wei & Penghui He, 2019. "Research on Predicting Line Loss Rate in Low Voltage Distribution Network Based on Gradient Boosting Decision Tree," Energies, MDPI, vol. 12(13), pages 1-14, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:13:p:2522-:d:244568
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/13/2522/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/13/2522/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aydin Jadidi & Raimundo Menezes & Nilmar De Souza & Antonio Cezar De Castro Lima, 2018. "A Hybrid GA–MLPNN Model for One-Hour-Ahead Forecasting of the Global Horizontal Irradiance in Elizabeth City, North Carolina," Energies, MDPI, vol. 11(10), pages 1-18, October.
    2. Long Cai & Jie Gu & Jinghuan Ma & Zhijian Jin, 2019. "Probabilistic Wind Power Forecasting Approach via Instance-Based Transfer Learning Embedded Gradient Boosting Decision Trees," Energies, MDPI, vol. 12(1), pages 1-19, January.
    3. Manjeevan Seera & Chee Peng Lim & Chu Kiong Loo, 2016. "Motor fault detection and diagnosis using a hybrid FMM-CART model with online learning," Journal of Intelligent Manufacturing, Springer, vol. 27(6), pages 1273-1285, December.
    4. Alexandre Lucas & Ricardo Barranco & Nazir Refa, 2019. "EV Idle Time Estimation on Charging Infrastructure, Comparing Supervised Machine Learning Regressions," Energies, MDPI, vol. 12(2), pages 1-17, January.
    5. Aqdas Naz & Muhammad Umar Javed & Nadeem Javaid & Tanzila Saba & Musaed Alhussein & Khursheed Aurangzeb, 2019. "Short-Term Electric Load and Price Forecasting Using Enhanced Extreme Learning Machine Optimization in Smart Grids," Energies, MDPI, vol. 12(5), pages 1-30, March.
    6. Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
    7. Huiting Zheng & Jiabin Yuan & Long Chen, 2017. "Short-Term Load Forecasting Using EMD-LSTM Neural Networks with a Xgboost Algorithm for Feature Importance Evaluation," Energies, MDPI, vol. 10(8), pages 1-20, August.
    8. Gyul Lee & Do-In Kim & Seon Hyeog Kim & Yong-June Shin, 2019. "Multiscale PMU Data Compression via Density-Based WAMS Clustering Analysis," Energies, MDPI, vol. 12(4), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bin Li & Yuxiang Tan & Qingqing Guo & Weihuan Wang, 2023. "Application of Comprehensive Evaluation of Line Loss Lean Management Based on Big-Data-Driven Paradigm," Sustainability, MDPI, vol. 15(15), pages 1-21, August.
    2. Michał Jasiński & Tomasz Sikorski & Zbigniew Leonowicz & Klaudiusz Borkowski & Elżbieta Jasińska, 2020. "The Application of Hierarchical Clustering to Power Quality Measurements in an Electrical Power Network with Distributed Generation," Energies, MDPI, vol. 13(9), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).
    2. Federico Divina & Aude Gilson & Francisco Goméz-Vela & Miguel García Torres & José F. Torres, 2018. "Stacking Ensemble Learning for Short-Term Electricity Consumption Forecasting," Energies, MDPI, vol. 11(4), pages 1-31, April.
    3. Moting Su & Zongyi Zhang & Ye Zhu & Donglan Zha, 2019. "Data-Driven Natural Gas Spot Price Forecasting with Least Squares Regression Boosting Algorithm," Energies, MDPI, vol. 12(6), pages 1-13, March.
    4. Evangelos Spiliotis & Fotios Petropoulos & Konstantinos Nikolopoulos, 2020. "The Impact of Imperfect Weather Forecasts on Wind Power Forecasting Performance: Evidence from Two Wind Farms in Greece," Energies, MDPI, vol. 13(8), pages 1-18, April.
    5. Ivana Kiprijanovska & Simon Stankoski & Igor Ilievski & Slobodan Jovanovski & Matjaž Gams & Hristijan Gjoreski, 2020. "HousEEC: Day-Ahead Household Electrical Energy Consumption Forecasting Using Deep Learning," Energies, MDPI, vol. 13(10), pages 1-29, May.
    6. Federico Divina & Miguel García Torres & Francisco A. Goméz Vela & José Luis Vázquez Noguera, 2019. "A Comparative Study of Time Series Forecasting Methods for Short Term Electric Energy Consumption Prediction in Smart Buildings," Energies, MDPI, vol. 12(10), pages 1-23, May.
    7. Sangho Lee & Youngdoo Son, 2021. "Motor Load Balancing with Roll Force Prediction for a Cold-Rolling Setup with Neural Networks," Mathematics, MDPI, vol. 9(12), pages 1-21, June.
    8. Bissan Ghaddar & Ignacio Gómez-Casares & Julio González-Díaz & Brais González-Rodríguez & Beatriz Pateiro-López & Sofía Rodríguez-Ballesteros, 2023. "Learning for Spatial Branching: An Algorithm Selection Approach," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1024-1043, September.
    9. Nahushananda Chakravarthy H G & Karthik M Seenappa & Sujay Raghavendra Naganna & Dayananda Pruthviraja, 2023. "Machine Learning Models for the Prediction of the Compressive Strength of Self-Compacting Concrete Incorporating Incinerated Bio-Medical Waste Ash," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    10. Bingjie Jin & Guihua Zeng & Zhilin Lu & Hongqiao Peng & Shuxin Luo & Xinhe Yang & Haojun Zhu & Mingbo Liu, 2022. "Hybrid LSTM–BPNN-to-BPNN Model Considering Multi-Source Information for Forecasting Medium- and Long-Term Electricity Peak Load," Energies, MDPI, vol. 15(20), pages 1-20, October.
    11. Wen, Shaoting & Buyukada, Musa & Evrendilek, Fatih & Liu, Jingyong, 2020. "Uncertainty and sensitivity analyses of co-combustion/pyrolysis of textile dyeing sludge and incense sticks: Regression and machine-learning models," Renewable Energy, Elsevier, vol. 151(C), pages 463-474.
    12. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
    13. Jiaan Zhang & Chenyu Liu & Leijiao Ge, 2022. "Short-Term Load Forecasting Model of Electric Vehicle Charging Load Based on MCCNN-TCN," Energies, MDPI, vol. 15(7), pages 1-25, April.
    14. Ijaz Ul Haq & Amin Ullah & Samee Ullah Khan & Noman Khan & Mi Young Lee & Seungmin Rho & Sung Wook Baik, 2021. "Sequential Learning-Based Energy Consumption Prediction Model for Residential and Commercial Sectors," Mathematics, MDPI, vol. 9(6), pages 1-17, March.
    15. Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
    16. Kusiak, Andrew & Zheng, Haiyang & Song, Zhe, 2009. "On-line monitoring of power curves," Renewable Energy, Elsevier, vol. 34(6), pages 1487-1493.
    17. Mohamed Massaoudi & Ines Chihi & Lilia Sidhom & Mohamed Trabelsi & Shady S. Refaat & Fakhreddine S. Oueslati, 2021. "Enhanced Random Forest Model for Robust Short-Term Photovoltaic Power Forecasting Using Weather Measurements," Energies, MDPI, vol. 14(13), pages 1-20, July.
    18. Zhu, Siying & Zhu, Feng, 2019. "Cycling comfort evaluation with instrumented probe bicycle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 217-231.
    19. Wei, Nan & Li, Changjun & Peng, Xiaolong & Li, Yang & Zeng, Fanhua, 2019. "Daily natural gas consumption forecasting via the application of a novel hybrid model," Applied Energy, Elsevier, vol. 250(C), pages 358-368.
    20. Dursun Delen & Hamed M. Zolbanin & Durand Crosby & David Wright, 2021. "To imprison or not to imprison: an analytics model for drug courts," Annals of Operations Research, Springer, vol. 303(1), pages 101-124, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:13:p:2522-:d:244568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.