IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i11p2184-d238169.html
   My bibliography  Save this article

Capturing Flow Energy from Ocean and Wind

Author

Listed:
  • Ying Gong

    (State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
    Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China)

  • Zhengbao Yang

    (Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China)

  • Xiaobiao Shan

    (State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China)

  • Yubiao Sun

    (Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China)

  • Tao Xie

    (State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China)

  • Yunlong Zi

    (Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China)

Abstract

Flow-induced energy harvesting has attracted more and more attention among researchers in both fields of the wind and the fluid. Piezoelectric energy harvesters and triboelectric nanogenerators are exploited to obtain superior performance and sustainability, and the electromagnetic conversion has been continuously improved in the meantime. Aiming at different circumstances, researchers have designed, manufactured, and tested a variety of energy harvesters. In this paper, we analyze the state-of-the-art energy harvesting techniques and categorize them based on the working environment, application targets, and energy conversion mechanisms. The trend of research endeavors is analyzed, and the advantages, existing problems of energy harvesters, and corresponding solutions of energy harvesters are assessed.

Suggested Citation

  • Ying Gong & Zhengbao Yang & Xiaobiao Shan & Yubiao Sun & Tao Xie & Yunlong Zi, 2019. "Capturing Flow Energy from Ocean and Wind," Energies, MDPI, vol. 12(11), pages 1-22, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2184-:d:238169
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/11/2184/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/11/2184/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Walwyn, David Richard & Brent, Alan Colin, 2015. "Renewable energy gathers steam in South Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 390-401.
    2. Esteban, M. Dolores & Diez, J. Javier & López, Jose S. & Negro, Vicente, 2011. "Why offshore wind energy?," Renewable Energy, Elsevier, vol. 36(2), pages 444-450.
    3. Snyder, Brian & Kaiser, Mark J., 2009. "Ecological and economic cost-benefit analysis of offshore wind energy," Renewable Energy, Elsevier, vol. 34(6), pages 1567-1578.
    4. Zhu, Hongjun & Gao, Yue, 2017. "Vortex induced vibration response and energy harvesting of a marine riser attached by a free-to-rotate impeller," Energy, Elsevier, vol. 134(C), pages 532-544.
    5. Viet, N.V. & Xie, X.D. & Liew, K.M. & Banthia, N. & Wang, Q., 2016. "Energy harvesting from ocean waves by a floating energy harvester," Energy, Elsevier, vol. 112(C), pages 1219-1226.
    6. Fthenakis, Vasilis & Kim, Hyung Chul, 2009. "Land use and electricity generation: A life-cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1465-1474, August.
    7. Wang, Junlei & Tang, Lihua & Zhao, Liya & Zhang, Zhien, 2019. "Efficiency investigation on energy harvesting from airflows in HVAC system based on galloping of isosceles triangle sectioned bluff bodies," Energy, Elsevier, vol. 172(C), pages 1066-1078.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haider Jaafar Chilabi & Hanim Salleh & Eris E. Supeni & Azizan As’arry & Khairil Anas Md Rezali & Ahmed B. Atrah, 2020. "Harvesting Energy from Planetary Gear Using Piezoelectric Material," Energies, MDPI, vol. 13(1), pages 1-25, January.
    2. Chaoyu Chen & Lei Zhang & Wenbo Ding & Lijun Chen & Jinkang Liu & Zhaoqun Du & Weidong Yu, 2020. "Woven Fabric Triboelectric Nanogenerator for Biomotion Energy Harvesting and as Self-Powered Gait-Recognizing Socks," Energies, MDPI, vol. 13(16), pages 1-10, August.
    3. Haider Jaafar Chilabi & Hanim Salleh & Waleed Al-Ashtari & E. E. Supeni & Luqman Chuah Abdullah & Azizan B. As’arry & Khairil Anas Md Rezali & Mohammad Khairul Azwan, 2021. "Rotational Piezoelectric Energy Harvesting: A Comprehensive Review on Excitation Elements, Designs, and Performances," Energies, MDPI, vol. 14(11), pages 1-29, May.
    4. V., Vipin & Koley, Santanu, 2022. "Mathematical modeling of a submerged piezoelectric wave energy converter device installed over an undulated seabed," Renewable Energy, Elsevier, vol. 200(C), pages 1382-1392.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amirinia, Gholamreza & Mafi, Somayeh & Mazaheri, Said, 2017. "Offshore wind resource assessment of Persian Gulf using uncertainty analysis and GIS," Renewable Energy, Elsevier, vol. 113(C), pages 915-929.
    2. Sun, Xiaojing & Huang, Diangui & Wu, Guoqing, 2012. "The current state of offshore wind energy technology development," Energy, Elsevier, vol. 41(1), pages 298-312.
    3. Hammar, Linus & Wikström, Andreas & Molander, Sverker, 2014. "Assessing ecological risks of offshore wind power on Kattegat cod," Renewable Energy, Elsevier, vol. 66(C), pages 414-424.
    4. Georgiou, Isabella & Areal, Francisco J., 2015. "Economic valuation of an offshore wind farm in Greece: The role of individual׳s base-state influences and beliefs in the value formation process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 717-724.
    5. Lv, Yanfang & Sun, Liping & Bernitsas, Michael M. & Sun, Hai, 2021. "A comprehensive review of nonlinear oscillators in hydrokinetic energy harnessing using flow-induced vibrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    6. Qin, Weiyang & Deng, Wangzheng & Pan, Jianan & Zhou, Zhiyong & Du, Wenfeng & Zhu, Pei, 2019. "Harvesting wind energy with bi-stable snap-through excited by vortex-induced vibration and galloping," Energy, Elsevier, vol. 189(C).
    7. Todd Chou & Vasileios Kosmas & Michele Acciaro & Katharina Renken, 2021. "A Comeback of Wind Power in Shipping: An Economic and Operational Review on the Wind-Assisted Ship Propulsion Technology," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    8. Prässler, Thomas & Schaechtele, Jan, 2012. "Comparison of the financial attractiveness among prospective offshore wind parks in selected European countries," Energy Policy, Elsevier, vol. 45(C), pages 86-101.
    9. Amponsah, Nana Yaw & Troldborg, Mads & Kington, Bethany & Aalders, Inge & Hough, Rupert Lloyd, 2014. "Greenhouse gas emissions from renewable energy sources: A review of lifecycle considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 461-475.
    10. Lovich, Jeffrey E. & Ennen, Joshua R., 2013. "Assessing the state of knowledge of utility-scale wind energy development and operation on non-volant terrestrial and marine wildlife," Applied Energy, Elsevier, vol. 103(C), pages 52-60.
    11. Hong, Lixuan & Möller, Bernd, 2011. "Offshore wind energy potential in China: Under technical, spatial and economic constraints," Energy, Elsevier, vol. 36(7), pages 4482-4491.
    12. Luigi Aldieri & Jonas Grafström & Kristoffer Sundström & Concetto Paolo Vinci, 2019. "Wind Power and Job Creation," Sustainability, MDPI, vol. 12(1), pages 1-23, December.
    13. Ioannidis, Romanos & Koutsoyiannis, Demetris, 2020. "A review of land use, visibility and public perception of renewable energy in the context of landscape impact," Applied Energy, Elsevier, vol. 276(C).
    14. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    15. Köberle, Alexandre C. & Gernaat, David E.H.J. & van Vuuren, Detlef P., 2015. "Assessing current and future techno-economic potential of concentrated solar power and photovoltaic electricity generation," Energy, Elsevier, vol. 89(C), pages 739-756.
    16. Dirk Johan van Vuuren & Annlizé L. Marnewick & Jan Harm C. Pretorius, 2021. "A Financial Evaluation of a Multiple Inclination, Rooftop-Mounted, Photovoltaic System Where Structured Tariffs Apply: A Case Study of a South African Shopping Centre," Energies, MDPI, vol. 14(6), pages 1-26, March.
    17. McManamay, Ryan A. & DeRolph, Christopher R. & Surendran-Nair, Sujithkumar & Allen-Dumas, Melissa, 2019. "Spatially explicit land-energy-water future scenarios for cities: Guiding infrastructure transitions for urban sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 880-900.
    18. Adedipe, Oyewole & Brennan, Feargal & Kolios, Athanasios, 2016. "Review of corrosion fatigue in offshore structures: Present status and challenges in the offshore wind sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 141-154.
    19. Amaducci, Stefano & Yin, Xinyou & Colauzzi, Michele, 2018. "Agrivoltaic systems to optimise land use for electric energy production," Applied Energy, Elsevier, vol. 220(C), pages 545-561.
    20. Jahangir, Mohammad Hossein & Hosseini, Seyed Sina & Mehrpooya, Mehdi, 2018. "A detailed theoretical modeling and parametric investigation of potential power in heaving buoys," Energy, Elsevier, vol. 154(C), pages 201-209.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2184-:d:238169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.