IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i11p2068-d235664.html
   My bibliography  Save this article

A New Model to Simulate Local Market Power in a Multi-Area Electricity Market: Application to the European Case

Author

Listed:
  • Alberto Orgaz

    (Institute for Research in Technology (IIT), ICAI School of Engineering, Comillas Pontifical University, 28015 Madrid, Spain)

  • Antonio Bello

    (Institute for Research in Technology (IIT), ICAI School of Engineering, Comillas Pontifical University, 28015 Madrid, Spain)

  • Javier Reneses

    (Institute for Research in Technology (IIT), ICAI School of Engineering, Comillas Pontifical University, 28015 Madrid, Spain)

Abstract

The work presented in this article proposes an original method that models the medium-term market equilibrium under imperfect competition circumstances in multi-area electricity systems. It provides a system analysis considering multiple market splitting possibilities, where local market power may appear according to the status of the interconnections. As a result of new policies and regulations, power systems are increasingly integrating the existing electricity markets in unified frameworks. The integration of electricity markets poses highly challenging tasks due to the uncertainty that comes from the agents’ strategic behaviors which depend on multiple factors, for instance, the state of the interconnections. When it comes to modeling these effects, the purpose is to identify each strategy by using conjectured-price responses that depend on the different states of the system. Consequently, the problem becomes highly combinatorial, which heightens its size as well as its complexity. Therefore, the purpose of this work’s methodology is the reduction of the possible network configurations so as to ensure a computational tractability in the problem. In order to validate this methodology, it has been put to the test in a realistic and full-scale two-year operation planning model of the European electricity market that consists of a group of nine countries.

Suggested Citation

  • Alberto Orgaz & Antonio Bello & Javier Reneses, 2019. "A New Model to Simulate Local Market Power in a Multi-Area Electricity Market: Application to the European Case," Energies, MDPI, vol. 12(11), pages 1-15, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2068-:d:235664
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/11/2068/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/11/2068/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lopez de Haro, S. & Sanchez Martin, P. & de la Hoz Ardiz, J.E. & Fernandez Caro, J., 2007. "Estimating conjectural variations for electricity market models," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1322-1338, September.
    2. Turvey, Ralph, 2006. "Interconnector economics," Energy Policy, Elsevier, vol. 34(13), pages 1457-1472, September.
    3. Pedro Linares & Francisco Javier Santos & Mariano Ventosa & Luis Lapiedra, 2006. "Impacts of the European Emissions Trading Scheme Directive and Permit Assignment Methods on the Spanish Electricity Sector," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 79-98.
    4. Ettore Bompard & Shaghayegh Zalzar & Tao Huang & Arturs Purvins & Marcelo Masera, 2018. "Baltic Power Systems’ Integration into the EU Market Coupling under Different Desynchronization Schemes: A Comparative Market Analysis," Energies, MDPI, vol. 11(8), pages 1-15, July.
    5. Severin Borenstein & James. Bushnell & Steven Stoft, 2000. "The Competitive Effects of Transmission Capacity in A Deregulated Electricity Industry," RAND Journal of Economics, The RAND Corporation, vol. 31(2), pages 294-325, Summer.
    6. David M. Quick and Janis M. Carey, 2001. "An Analysis of Market Power Mitigation Strategies in Colorado's Electricity Industry," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 55-78.
    7. Ventosa, Mariano & Baillo, Alvaro & Ramos, Andres & Rivier, Michel, 2005. "Electricity market modeling trends," Energy Policy, Elsevier, vol. 33(7), pages 897-913, May.
    8. Neuhoff, Karsten & Barquin, Julian & Boots, Maroeska G. & Ehrenmann, Andreas & Hobbs, Benjamin F. & Rijkers, Fieke A.M. & Vazquez, Miguel, 2005. "Network-constrained Cournot models of liberalized electricity markets: the devil is in the details," Energy Economics, Elsevier, vol. 27(3), pages 495-525, May.
    9. J Barquín & B Vitoriano & E Centeno & F Fernández-Menéndez, 2009. "An optimization-based conjectured supply function equilibrium model for network constrained electricity markets," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(12), pages 1719-1729, December.
    10. William W. Hogan, 1997. "A Market Power Model with Strategic Interaction in Electricity Networks," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 107-141.
    11. Cardell, Judith B. & Hitt, Carrie Cullen & Hogan, William W., 1997. "Market power and strategic interaction in electricity networks," Resource and Energy Economics, Elsevier, vol. 19(1-2), pages 109-137, March.
    12. Domanico, Fabio, 2007. "Concentration in the European electricity industry: The internal market as solution?," Energy Policy, Elsevier, vol. 35(10), pages 5064-5076, October.
    13. Mateo Beus & Ivan Pavić & Ivona Štritof & Tomislav Capuder & Hrvoje Pandžić, 2018. "Electricity Market Design in Croatia within the European Electricity Market—Recommendations for Further Development," Energies, MDPI, vol. 11(2), pages 1-20, February.
    14. Creti, Anna & Fumagalli, Eileen & Fumagalli, Elena, 2010. "Integration of electricity markets in Europe: Relevant issues for Italy," Energy Policy, Elsevier, vol. 38(11), pages 6966-6976, November.
    15. Giorgia Oggioni & Yves Smeers & Elisabetta Allevi & Siegfried Schaible, 2012. "A Generalized Nash Equilibrium Model of Market Coupling in the European Power System," Networks and Spatial Economics, Springer, vol. 12(4), pages 503-560, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wan, Yi & Kober, Tom & Densing, Martin, 2022. "Nonlinear inverse demand curves in electricity market modeling," Energy Economics, Elsevier, vol. 107(C).
    2. Samuli Honkapuro & Jasmin Jaanto & Salla Annala, 2023. "A Systematic Review of European Electricity Market Design Options," Energies, MDPI, vol. 16(9), pages 1-26, April.
    3. Geovanny Marulanda & Antonio Bello & Jenny Cifuentes & Javier Reneses, 2020. "Wind Power Long-Term Scenario Generation Considering Spatial-Temporal Dependencies in Coupled Electricity Markets," Energies, MDPI, vol. 13(13), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Spiridonova, Olga, 2016. "Transmission capacities and competition in Western European electricity market," Energy Policy, Elsevier, vol. 96(C), pages 260-273.
    2. Dávid Csercsik, 2016. "Competition and Cooperation in a Bidding Model of Electrical Energy Trade," Networks and Spatial Economics, Springer, vol. 16(4), pages 1043-1073, December.
    3. Pepermans, Guido & Willems, Bert, 2010. "Cost Recovery in Congested Electricity Networks," Working Papers 2010/22, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
    4. Tanachai Limpaitoon, Yihsu Chen, and Shmuel S. Oren, 2014. "The Impact of Imperfect Competition in Emission Permits Trading on Oligopolistic Electricity Markets," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    5. David Pozo & Enzo Sauma & Javier Contreras, 2017. "Basic theoretical foundations and insights on bilevel models and their applications to power systems," Annals of Operations Research, Springer, vol. 254(1), pages 303-334, July.
    6. Paul Twomey & Richard Green & Karsten Neuhoff & David Newbery, 2005. "A Review of the Monitoring of Market Power: The Possible Roles of TSOs in Monitoring for Market Power Issues in Congested Transmission Systems," Working Papers 0502, Massachusetts Institute of Technology, Center for Energy and Environmental Policy Research.
    7. Helman, Udi, 2006. "Market power monitoring and mitigation in the US wholesale power markets," Energy, Elsevier, vol. 31(6), pages 877-904.
    8. Neuhoff, Karsten & Barquin, Julian & Boots, Maroeska G. & Ehrenmann, Andreas & Hobbs, Benjamin F. & Rijkers, Fieke A.M. & Vazquez, Miguel, 2005. "Network-constrained Cournot models of liberalized electricity markets: the devil is in the details," Energy Economics, Elsevier, vol. 27(3), pages 495-525, May.
    9. Ino, Hiroaki & Matsueda, Norimichi & Matsumura, Toshihiro, 2022. "Market competition and strategic choices of electric power sources under fluctuating demand," Resource and Energy Economics, Elsevier, vol. 68(C).
    10. Andreas Ehrenmann & Karsten Neuhoff, 2009. "A Comparison of Electricity Market Designs in Networks," Operations Research, INFORMS, vol. 57(2), pages 274-286, April.
    11. Cristian Zambrano & Yris Olaya, 2017. "An agent-based simulation approach to congestion management for the Colombian electricity market," Annals of Operations Research, Springer, vol. 258(2), pages 217-236, November.
    12. Dijk, Justin & Willems, Bert, 2011. "The effect of counter-trading on competition in electricity markets," Energy Policy, Elsevier, vol. 39(3), pages 1764-1773, March.
    13. Brehm, Paul A. & Zhang, Yiyuan, 2021. "The efficiency and environmental impacts of market organization: Evidence from the Texas electricity market," Energy Economics, Elsevier, vol. 101(C).
    14. E. Anderson & A. Philpott & H. Xu, 2007. "Modelling the effects of interconnection between electricity markets subject to uncertainty," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(1), pages 1-26, February.
    15. Poletti, Steve, 2009. "Government procurement of peak capacity in the New Zealand electricity market," Energy Policy, Elsevier, vol. 37(9), pages 3409-3417, September.
    16. Kamiński, Jacek, 2012. "The development of market power in the Polish power generation sector: A 10-year perspective," Energy Policy, Elsevier, vol. 42(C), pages 136-147.
    17. Tanachai Limpaitoon & Yihsu Chen & Shmuel Oren, 2011. "The impact of carbon cap and trade regulation on congested electricity market equilibrium," Journal of Regulatory Economics, Springer, vol. 40(3), pages 237-260, December.
    18. Bjørndal, Mette & Gribkovskaia, Victoria & Jörnsten, Kurt, 2014. "Market Power in a Power Market with Transmission Constraints," Discussion Papers 2014/29, Norwegian School of Economics, Department of Business and Management Science.
    19. Hélène Le Cadre, 2019. "On the efficiency of local electricity markets under decentralized and centralized designs: a multi-leader Stackelberg game analysis," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(4), pages 953-984, December.
    20. Karsten Neuhoff, 2003. "Integrating Transmission and Energy Markets Mitigates Market Power," Working Papers EP17, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2068-:d:235664. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.