IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p3209-d183918.html
   My bibliography  Save this article

Analyzing the Performance of Wave-Energy Generator Systems (SSG) for the Southern Coasts of Iran, in the Persian Gulf and Oman Sea

Author

Listed:
  • Kamran Khalifehei

    (Department of Civil Engineering, University of Sistan and Baluchestan, Zahedan 987-98155, Iran)

  • Gholamreza Azizyan

    (Department of Civil Engineering, University of Sistan and Baluchestan, Zahedan 987-98155, Iran)

  • Carlo Gualtieri

    (Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, 80125 Napoli, Italy)

Abstract

The Sea-wave Slot-cone Generator (SSG) wave-energy device is a type of electric energy converting structure that converts energy from sea waves, and which is designed and installed based on wave-overtopping in areas. Most of the previous studies have evaluated SSG systems based on hypothetical waves, considering the system geometry variations. However, it is important to consider the real wave conditions. This paper presents the results of a numerical study to investigate the performances of an SSG system in the context of the Persian Gulf and Oman Sea, where there is a strong need for renewable energies. The computational fluid dynamic (CFD) code Flow-3D was applied. First of all, available experimental data were applied to calibrate and evaluate the accuracy of the numerical model. Then, the real wave conditions on the coasts of the Persian Gulf and Oman Sea were imposed on the JONSWAP spectrum for the numerical modeling. Results of the study demonstrated that the hydraulic efficiency of the SSG system in the Persian Gulf and Oman Sea was low for wave heights lower than 0.5 m. The nominal efficiency of the system was relatively more than 60% for wave heights higher than 1 m; thus, the performance of the SSG system was suitably evaluated. Finally, the numerical results demonstrated that the most optimal conditions, with a nominal efficiency of 97%, were obtained for incident waves that had a height of 2 m and a period of 5.6 s. In this case, the hydraulic performance of the system was maximum.

Suggested Citation

  • Kamran Khalifehei & Gholamreza Azizyan & Carlo Gualtieri, 2018. "Analyzing the Performance of Wave-Energy Generator Systems (SSG) for the Southern Coasts of Iran, in the Persian Gulf and Oman Sea," Energies, MDPI, vol. 11(11), pages 1-25, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3209-:d:183918
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/3209/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/3209/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Angeloudis, Athanasios & Falconer, Roger A. & Bray, Samuel & Ahmadian, Reza, 2016. "Representation and operation of tidal energy impoundments in a coastal hydrodynamic model," Renewable Energy, Elsevier, vol. 99(C), pages 1103-1115.
    2. Claudio Iuppa & Pasquale Contestabile & Luca Cavallaro & Enrico Foti & Diego Vicinanza, 2016. "Hydraulic Performance of an Innovative Breakwater for Overtopping Wave Energy Conversion," Sustainability, MDPI, vol. 8(12), pages 1-20, November.
    3. Margheritini, L. & Vicinanza, D. & Frigaard, P., 2009. "SSG wave energy converter: Design, reliability and hydraulic performance of an innovative overtopping device," Renewable Energy, Elsevier, vol. 34(5), pages 1371-1380.
    4. Vicinanza, D. & Contestabile, P. & Ferrante, V., 2013. "Wave energy potential in the north-west of Sardinia (Italy)," Renewable Energy, Elsevier, vol. 50(C), pages 506-521.
    5. Liberti, Luca & Carillo, Adriana & Sannino, Gianmaria, 2013. "Wave energy resource assessment in the Mediterranean, the Italian perspective," Renewable Energy, Elsevier, vol. 50(C), pages 938-949.
    6. Buccino, Mariano & Stagonas, Dimitris & Vicinanza, Diego, 2015. "Development of a composite sea wall wave energy converter system," Renewable Energy, Elsevier, vol. 81(C), pages 509-522.
    7. Diego Vicinanza & Lucia Margheritini & Jens Peter Kofoed & Mariano Buccino, 2012. "The SSG Wave Energy Converter: Performance, Status and Recent Developments," Energies, MDPI, vol. 5(2), pages 1-34, January.
    8. Pérez-Collazo, C. & Greaves, D. & Iglesias, G., 2015. "A review of combined wave and offshore wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 141-153.
    9. Vincenzo Franzitta & Domenico Curto, 2017. "Sustainability of the Renewable Energy Extraction Close to the Mediterranean Islands," Energies, MDPI, vol. 10(3), pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amer Al-Hinai & Yassine Charabi & Seyed H. Aghay Kaboli, 2021. "Offshore Wind Energy Resource Assessment across the Territory of Oman: A Spatial-Temporal Data Analysis," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
    2. Chim Pui Leung & Ka Wai Eric Cheng, 2021. "Design, Analysis and Implementation of the Tapped-Inductor Boost Current Converter on Current Based System," Energies, MDPI, vol. 14(4), pages 1-21, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Evangelia Dialyna & Theocharis Tsoutsos, 2021. "Wave Energy in the Mediterranean Sea: Resource Assessment, Deployed WECs and Prospects," Energies, MDPI, vol. 14(16), pages 1-18, August.
    2. Takvor H. Soukissian & Dimitra Denaxa & Flora Karathanasi & Aristides Prospathopoulos & Konstantinos Sarantakos & Athanasia Iona & Konstantinos Georgantas & Spyridon Mavrakos, 2017. "Marine Renewable Energy in the Mediterranean Sea: Status and Perspectives," Energies, MDPI, vol. 10(10), pages 1-56, September.
    3. Veigas, M. & López, M. & Iglesias, G., 2014. "Assessing the optimal location for a shoreline wave energy converter," Applied Energy, Elsevier, vol. 132(C), pages 404-411.
    4. Pasquale Contestabile & Enrico Di Lauro & Paolo Galli & Cesare Corselli & Diego Vicinanza, 2017. "Offshore Wind and Wave Energy Assessment around Malè and Magoodhoo Island (Maldives)," Sustainability, MDPI, vol. 9(4), pages 1-24, April.
    5. Fadaeenejad, M. & Shamsipour, R. & Rokni, S.D. & Gomes, C., 2014. "New approaches in harnessing wave energy: With special attention to small islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 345-354.
    6. Raúl Cascajo & Emilio García & Eduardo Quiles & Antonio Correcher & Francisco Morant, 2019. "Integration of Marine Wave Energy Converters into Seaports: A Case Study in the Port of Valencia," Energies, MDPI, vol. 12(5), pages 1-24, February.
    7. Kushal A. Prasad & Aneesh A. Chand & Nallapaneni Manoj Kumar & Sumesh Narayan & Kabir A. Mamun, 2022. "A Critical Review of Power Take-Off Wave Energy Technology Leading to the Conceptual Design of a Novel Wave-Plus-Photon Energy Harvester for Island/Coastal Communities’ Energy Needs," Sustainability, MDPI, vol. 14(4), pages 1-55, February.
    8. Contestabile, Pasquale & Crispino, Gaetano & Di Lauro, Enrico & Ferrante, Vincenzo & Gisonni, Corrado & Vicinanza, Diego, 2020. "Overtopping breakwater for wave Energy Conversion: Review of state of art, recent advancements and what lies ahead," Renewable Energy, Elsevier, vol. 147(P1), pages 705-718.
    9. Joan Pau Sierra & Ricard Castrillo & Marc Mestres & César Mösso & Piero Lionello & Luigi Marzo, 2020. "Impact of Climate Change on Wave Energy Resource in the Mediterranean Coast of Morocco," Energies, MDPI, vol. 13(11), pages 1-19, June.
    10. Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
    11. Pasquale Contestabile & Vincenzo Ferrante & Diego Vicinanza, 2015. "Wave Energy Resource along the Coast of Santa Catarina (Brazil)," Energies, MDPI, vol. 8(12), pages 1-25, December.
    12. Foteinis, Spyros, 2022. "Wave energy converters in low energy seas: Current state and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    13. De Zhi Ning & Xuan Lie Zhao & Li Fen Chen & Ming Zhao, 2018. "Hydrodynamic Performance of an Array of Wave Energy Converters Integrated with a Pontoon-Type Breakwater," Energies, MDPI, vol. 11(3), pages 1-17, March.
    14. Stefania Naty & Antonino Viviano & Enrico Foti, 2016. "Wave Energy Exploitation System Integrated in the Coastal Structure of a Mediterranean Port," Sustainability, MDPI, vol. 8(12), pages 1-19, December.
    15. Pasquale Contestabile & Enrico Di Lauro & Mariano Buccino & Diego Vicinanza, 2016. "Economic Assessment of Overtopping BReakwater for Energy Conversion (OBREC): A Case Study in Western Australia," Sustainability, MDPI, vol. 9(1), pages 1-28, December.
    16. Vincenzo Franzitta & Pietro Catrini & Domenico Curto, 2017. "Wave Energy Assessment along Sicilian Coastline, Based on DEIM Point Absorber," Energies, MDPI, vol. 10(3), pages 1-15, March.
    17. David Gallach-Sánchez & Peter Troch & Andreas Kortenhaus, 2018. "A Critical Analysis and Validation of the Accuracy of Wave Overtopping Prediction Formulae for OWECs," Energies, MDPI, vol. 11(1), pages 1-20, January.
    18. Appendini, Christian M. & Urbano-Latorre, Claudia P. & Figueroa, Bernardo & Dagua-Paz, Claudia J. & Torres-Freyermuth, Alec & Salles, Paulo, 2015. "Wave energy potential assessment in the Caribbean Low Level Jet using wave hindcast information," Applied Energy, Elsevier, vol. 137(C), pages 375-384.
    19. James Allen & Konstantinos Sampanis & Jian Wan & Deborah Greaves & Jon Miles & Gregorio Iglesias, 2016. "Laboratory Tests in the Development of WaveCat," Sustainability, MDPI, vol. 8(12), pages 1-12, December.
    20. Francisco Haces-Fernandez & Hua Li & David Ramirez, 2018. "Assessment of the Potential of Energy Extracted from Waves and Wind to Supply Offshore Oil Platforms Operating in the Gulf of Mexico," Energies, MDPI, vol. 11(5), pages 1-25, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3209-:d:183918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.