IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i4p568-d96428.html
   My bibliography  Save this article

Simulations of Melting of Encapsulated CaCl 2 ·6H 2 O for Thermal Energy Storage Technologies

Author

Listed:
  • Antonio M. Puertas

    (Department of Chemistry and Physics, University of Almería, 04120 Almería, Spain
    Solar Energy Research Center, CIESOL, Joint Institute University of Almería-PSA CIEMAT, 04120 Almería, Spain)

  • Manuel S. Romero-Cano

    (Department of Chemistry and Physics, University of Almería, 04120 Almería, Spain
    Solar Energy Research Center, CIESOL, Joint Institute University of Almería-PSA CIEMAT, 04120 Almería, Spain)

  • Francisco Javier De Las Nieves

    (Department of Chemistry and Physics, University of Almería, 04120 Almería, Spain)

  • Sabina Rosiek

    (Department of Chemistry and Physics, University of Almería, 04120 Almería, Spain
    Solar Energy Research Center, CIESOL, Joint Institute University of Almería-PSA CIEMAT, 04120 Almería, Spain)

  • Francisco J. Batlles

    (Department of Chemistry and Physics, University of Almería, 04120 Almería, Spain
    Solar Energy Research Center, CIESOL, Joint Institute University of Almería-PSA CIEMAT, 04120 Almería, Spain)

Abstract

We present in this work simulations using the finite difference approximation in 2D for the melting of an encapsulated phase-change material suitable for heat storage applications; in particular, we study CaCl 2 ·6H 2 O in a cylindrical encapsulation of internal radius 8 mm. We choose this particular salt hydrate due to its availability and economic feasibility in high thermal mass building walls or storage. Considering only heat conduction, a thermostat is placed far from the capsule, providing heat for the melting of the phase-change material (PCM), which is initially frozen in a water bath. The difference in density between the solid and liquid phases is taken into account by considering a void in the solid PCM. A simple theoretical model is also presented, based on solving the heat equation in the steady state. The kinetics of melting is monitored by the total solid fraction and temperatures in the inner and outer surfaces of the capsule. The effect of different parameters is presented (thermostat temperature, capsule thickness, capsule conductivity and natural convection in the bath), showing the potential application of the method to select materials or geometries of the capsule.

Suggested Citation

  • Antonio M. Puertas & Manuel S. Romero-Cano & Francisco Javier De Las Nieves & Sabina Rosiek & Francisco J. Batlles, 2017. "Simulations of Melting of Encapsulated CaCl 2 ·6H 2 O for Thermal Energy Storage Technologies," Energies, MDPI, vol. 10(4), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:568-:d:96428
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/4/568/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/4/568/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Archibold, Antonio Ramos & Rahman, Muhammad M. & Yogi Goswami, D. & Stefanakos, Elias K., 2015. "The effects of radiative heat transfer during the melting process of a high temperature phase change material confined in a spherical shell," Applied Energy, Elsevier, vol. 138(C), pages 675-684.
    2. Calvet, Nicolas & Py, Xavier & Olivès, Régis & Bédécarrats, Jean-Pierre & Dumas, Jean-Pierre & Jay, Frédéric, 2013. "Enhanced performances of macro-encapsulated phase change materials (PCMs) by intensification of the internal effective thermal conductivity," Energy, Elsevier, vol. 55(C), pages 956-964.
    3. Peiró, Gerard & Gasia, Jaume & Miró, Laia & Cabeza, Luisa F., 2015. "Experimental evaluation at pilot plant scale of multiple PCMs (cascaded) vs. single PCM configuration for thermal energy storage," Renewable Energy, Elsevier, vol. 83(C), pages 729-736.
    4. Solomon, Laura & Elmozughi, Ali F. & Oztekin, Alparslan & Neti, Sudhakar, 2015. "Effect of internal void placement on the heat transfer performance – Encapsulated phase change material for energy storage," Renewable Energy, Elsevier, vol. 78(C), pages 438-447.
    5. Amin, N.A.M. & Bruno, F. & Belusko, M., 2014. "Effective thermal conductivity for melting in PCM encapsulated in a sphere," Applied Energy, Elsevier, vol. 122(C), pages 280-287.
    6. Castell, A. & Solé, C., 2015. "An overview on design methodologies for liquid–solid PCM storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 289-307.
    7. Sharma, Atul & Tyagi, V.V. & Chen, C.R. & Buddhi, D., 2009. "Review on thermal energy storage with phase change materials and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 318-345, February.
    8. Zhang, H.L. & Baeyens, J. & Degrève, J. & Cáceres, G. & Segal, R. & Pitié, F., 2014. "Latent heat storage with tubular-encapsulated phase change materials (PCMs)," Energy, Elsevier, vol. 76(C), pages 66-72.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Royo, Patricia & Acevedo, Luis & Ferreira, Victor J. & García-Armingol, Tatiana & López-Sabirón, Ana M. & Ferreira, Germán, 2019. "High-temperature PCM-based thermal energy storage for industrial furnaces installed in energy-intensive industries," Energy, Elsevier, vol. 173(C), pages 1030-1040.
    2. Cheng, Xiwen & Zhai, Xiaoqiang, 2018. "Thermal performance analysis of a cascaded cold storage unit using multiple PCMs," Energy, Elsevier, vol. 143(C), pages 448-457.
    3. Dubey, Abhayjeet kumar & Sun, Jingyi & Choudhary, Tushar & Dash, Madhusmita & Rakshit, Dibakar & Ansari, M Zahid & Ramakrishna, Seeram & Liu, Yong & Nanda, Himansu Sekhar, 2023. "Emerging phase change materials with improved thermal efficiency for a clean and sustainable environment: An approach towards net zero," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    4. Tian, Heqing & Du, Lichan & Wei, Xiaolan & Deng, Suyan & Wang, Weilong & Ding, Jing, 2017. "Enhanced thermal conductivity of ternary carbonate salt phase change material with Mg particles for solar thermal energy storage," Applied Energy, Elsevier, vol. 204(C), pages 525-530.
    5. Zhu, Yanlong & Lu, Jie & Yuan, Yuan & Wang, Fuqiang & Tan, Heping, 2020. "Effect of radiation on the effective thermal conductivity of encapsulated capsules containing high-temperature phase change materials," Renewable Energy, Elsevier, vol. 160(C), pages 676-685.
    6. Wang, Huiru & Liu, Zhenyu & Wu, Huiying, 2017. "Entransy dissipation-based thermal resistance optimization of slab LHTES system with multiple PCMs arranged in a 2D array," Energy, Elsevier, vol. 138(C), pages 739-751.
    7. Zhang, Yin & Wang, Xin & Zhang, Yinping & Zhuo, Siwen, 2016. "A simplified model to study the location impact of latent thermal energy storage in building cooling heating and power system," Energy, Elsevier, vol. 114(C), pages 885-894.
    8. McKenna, P. & Turner, W.J.N. & Finn, D.P., 2018. "Geocooling with integrated PCM thermal energy storage in a commercial building," Energy, Elsevier, vol. 144(C), pages 865-876.
    9. Zhang, P. & Xiao, X. & Ma, Z.W., 2016. "A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement," Applied Energy, Elsevier, vol. 165(C), pages 472-510.
    10. Pirasaci, Tolga & Wickramaratne, Chatura & Moloney, Francesca & Yogi Goswami, D. & Stefanakos, Elias, 2017. "Dynamics of phase change in a vertical PCM capsule in the presence of radiation at high temperatures," Applied Energy, Elsevier, vol. 206(C), pages 498-506.
    11. Songgang Qiu & Laura Solomon & Garrett Rinker, 2017. "Development of an Integrated Thermal Energy Storage and Free-Piston Stirling Generator for a Concentrating Solar Power System," Energies, MDPI, vol. 10(9), pages 1-17, September.
    12. Evdoxia Paroutoglou & Peter Fojan & Leonid Gurevich & Simon Furbo & Jianhua Fan & Marc Medrano & Alireza Afshari, 2022. "A Numerical Parametric Study of a Double-Pipe LHTES Unit with PCM Encapsulated in the Annular Space," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
    13. Reyes, A. & Pailahueque, N. & Henríquez-Vargas, L. & Vásquez, J. & Sepúlveda, F., 2019. "Analysis of a multistage solar thermal energy accumulator," Renewable Energy, Elsevier, vol. 136(C), pages 621-631.
    14. Zhang, Huili & Kong, Weibin & Tan, Tianwei & Baeyens, Jan, 2017. "High-efficiency concentrated solar power plants need appropriate materials for high-temperature heat capture, conveying and storage," Energy, Elsevier, vol. 139(C), pages 52-64.
    15. Royo, Patricia & Ferreira, Víctor J. & López-Sabirón, Ana M. & Ferreira, Germán, 2016. "Hybrid diagnosis to characterise the energy and environmental enhancement of photovoltaic modules using smart materials," Energy, Elsevier, vol. 101(C), pages 174-189.
    16. Yanjun Zhang & Shuli Liu & Liu Yang & Xiue Yang & Yongliang Shen & Xiaojing Han, 2020. "Experimental Study on the Strengthen Heat Transfer Performance of PCM by Active Stirring," Energies, MDPI, vol. 13(9), pages 1-16, May.
    17. Zhou, H. & de Sera, I.E.E. & Infante Ferreira, C.A., 2015. "Modelling and experimental validation of a fluidized bed based CO2 hydrate cold storage system," Applied Energy, Elsevier, vol. 158(C), pages 433-445.
    18. Gao, Wei & Liu, Feifan & Yu, Cheng & Chen, Yongping & Liu, Xiangdong, 2023. "Microfluidic method–based encapsulated phase change materials: Fundamentals, progress, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    19. Zhong, Yajuan & Zhao, Bingchen & Lin, Jun & Zhang, Feng & Wang, Haoran & Zhu, Zhiyong & Dai, Zhimin, 2019. "Encapsulation of high-temperature inorganic phase change materials using graphite as heat transfer enhancer," Renewable Energy, Elsevier, vol. 133(C), pages 240-247.
    20. Alam, Tanvir E. & Dhau, Jaspreet S. & Goswami, D. Yogi & Stefanakos, Elias, 2015. "Macroencapsulation and characterization of phase change materials for latent heat thermal energy storage systems," Applied Energy, Elsevier, vol. 154(C), pages 92-101.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:568-:d:96428. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.