IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i12p1954-d120279.html
   My bibliography  Save this article

Force Measurements on a VAWT Blade in Parked Conditions

Author

Listed:
  • Anders Goude

    (Division of Electricity, Department of Engineering Sciences, Uppsala University, Box 534, 751 21 Uppsala, Sweden)

  • Morgan Rossander

    (Division of Electricity, Department of Engineering Sciences, Uppsala University, Box 534, 751 21 Uppsala, Sweden)

Abstract

The forces on a turbine at extreme wind conditions when the turbine is parked is one of the most important design cases for the survivability of a turbine. In this work, the forces on a blade and its support arms have been measured on a 12 kW straight-bladed vertical axis wind turbine at an open site. Two cases are tested: one during electrical braking of the turbine, which allows it to rotate slowly, and one with the turbine mechanically fixed with the leading edge of the blade facing the main wind direction. The force variations with respect to wind direction are investigated, and it is seen that significant variations in forces depend on the wind direction. The measurements show that for the fixed case, when subjected to the same wind speed, the forces are lower when the blade faces the wind direction. The results also show that due to the lower forces at this particular wind direction, the average forces for the fixed blade are notably lower. Hence, it is possible to reduce the forces on a turbine blade, simply by taking the dominating wind direction into account when the turbine is parked. The measurements also show that a positive torque is generated from the blade for most wind directions, which causes the turbine to rotate in the electrically-braked case. These rotations will cause increased fatigue loads on the turbine blade.

Suggested Citation

  • Anders Goude & Morgan Rossander, 2017. "Force Measurements on a VAWT Blade in Parked Conditions," Energies, MDPI, vol. 10(12), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:1954-:d:120279
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/12/1954/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/12/1954/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eriksson, Sandra & Bernhoff, Hans & Leijon, Mats, 2008. "Evaluation of different turbine concepts for wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1419-1434, June.
    2. Eriksson, Sandra & Solum, Andreas & Leijon, Mats & Bernhoff, Hans, 2008. "Simulations and experiments on a 12kW direct driven PM synchronous generator for wind power," Renewable Energy, Elsevier, vol. 33(4), pages 674-681.
    3. Eduard Dyachuk & Morgan Rossander & Anders Goude & Hans Bernhoff, 2015. "Measurements of the Aerodynamic Normal Forces on a 12-kW Straight-Bladed Vertical Axis Wind Turbine," Energies, MDPI, vol. 8(8), pages 1-15, August.
    4. Tjiu, Willy & Marnoto, Tjukup & Mat, Sohif & Ruslan, Mohd Hafidz & Sopian, Kamaruzzaman, 2015. "Darrieus vertical axis wind turbine for power generation I: Assessment of Darrieus VAWT configurations," Renewable Energy, Elsevier, vol. 75(C), pages 50-67.
    5. Morgan Rossander & Eduard Dyachuk & Senad Apelfröjd & Kristian Trolin & Anders Goude & Hans Bernhoff & Sandra Eriksson, 2015. "Evaluation of a Blade Force Measurement System for a Vertical Axis Wind Turbine Using Load Cells," Energies, MDPI, vol. 8(6), pages 1-24, June.
    6. Kjellin, J. & Bülow, F. & Eriksson, S. & Deglaire, P. & Leijon, M. & Bernhoff, H., 2011. "Power coefficient measurement on a 12 kW straight bladed vertical axis wind turbine," Renewable Energy, Elsevier, vol. 36(11), pages 3050-3053.
    7. Tjiu, Willy & Marnoto, Tjukup & Mat, Sohif & Ruslan, Mohd Hafidz & Sopian, Kamaruzzaman, 2015. "Darrieus vertical axis wind turbine for power generation II: Challenges in HAWT and the opportunity of multi-megawatt Darrieus VAWT development," Renewable Energy, Elsevier, vol. 75(C), pages 560-571.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Victor Mendoza & Anders Goude, 2020. "Validation of Actuator Line and Vortex Models Using Normal Forces Measurements of a Straight-Bladed Vertical Axis Wind Turbine," Energies, MDPI, vol. 13(3), pages 1-16, January.
    2. Nguyen, Van-Dang & Jansson, Johan & Goude, Anders & Hoffman, Johan, 2019. "Direct Finite Element Simulation of the turbulent flow past a vertical axis wind turbine," Renewable Energy, Elsevier, vol. 135(C), pages 238-247.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morgan Rossander & Anders Goude & Sandra Eriksson, 2017. "Critical Speed Control for a Fixed Blade Variable Speed Wind Turbine," Energies, MDPI, vol. 10(11), pages 1-21, October.
    2. Senad Apelfröjd & Sandra Eriksson & Hans Bernhoff, 2016. "A Review of Research on Large Scale Modern Vertical Axis Wind Turbines at Uppsala University," Energies, MDPI, vol. 9(7), pages 1-16, July.
    3. Victor Mendoza & Anders Goude, 2020. "Validation of Actuator Line and Vortex Models Using Normal Forces Measurements of a Straight-Bladed Vertical Axis Wind Turbine," Energies, MDPI, vol. 13(3), pages 1-16, January.
    4. Hand, Brian & Kelly, Ger & Cashman, Andrew, 2021. "Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    5. Pierre Tchakoua & René Wamkeue & Mohand Ouhrouche & Tommy Andy Tameghe & Gabriel Ekemb, 2015. "A New Approach for Modeling Darrieus-Type Vertical Axis Wind Turbine Rotors Using Electrical Equivalent Circuit Analogy: Basis of Theoretical Formulations and Model Development," Energies, MDPI, vol. 8(10), pages 1-34, September.
    6. Eduard Dyachuk & Anders Goude, 2015. "Numerical Validation of a Vortex Model against ExperimentalData on a Straight-Bladed Vertical Axis Wind Turbine," Energies, MDPI, vol. 8(10), pages 1-21, October.
    7. Daniel Micallef & Gerard Van Bussel, 2018. "A Review of Urban Wind Energy Research: Aerodynamics and Other Challenges," Energies, MDPI, vol. 11(9), pages 1-27, August.
    8. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    9. Bangga, Galih & Dessoky, Amgad & Wu, Zhenlong & Rogowski, Krzysztof & Hansen, Martin O.L., 2020. "Accuracy and consistency of CFD and engineering models for simulating vertical axis wind turbine loads," Energy, Elsevier, vol. 206(C).
    10. Chong, Wen-Tong & Muzammil, Wan Khairul & Wong, Kok-Hoe & Wang, Chin-Tsan & Gwani, Mohammed & Chu, Yung-Jeh & Poh, Sin-Chew, 2017. "Cross axis wind turbine: Pushing the limit of wind turbine technology with complementary design," Applied Energy, Elsevier, vol. 207(C), pages 78-95.
    11. Hand, Brian & Cashman, Andrew, 2018. "Aerodynamic modeling methods for a large-scale vertical axis wind turbine: A comparative study," Renewable Energy, Elsevier, vol. 129(PA), pages 12-31.
    12. Balduzzi, Francesco & Bianchini, Alessandro & Ferrara, Giovanni & Ferrari, Lorenzo, 2016. "Dimensionless numbers for the assessment of mesh and timestep requirements in CFD simulations of Darrieus wind turbines," Energy, Elsevier, vol. 97(C), pages 246-261.
    13. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Murata, Junsuke & Furukawa, Kazuma & Yamamoto, Masayuki, 2015. "Effect of number of blades on aerodynamic forces on a straight-bladed Vertical Axis Wind Turbine," Energy, Elsevier, vol. 90(P1), pages 784-795.
    14. Goude, Anders & Bülow, Fredrik, 2013. "Robust VAWT control system evaluation by coupled aerodynamic and electrical simulations," Renewable Energy, Elsevier, vol. 59(C), pages 193-201.
    15. Lam, H.F. & Peng, H.Y., 2017. "Measurements of the wake characteristics of co- and counter-rotating twin H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 131(C), pages 13-26.
    16. Patel, Vimal & Eldho, T.I. & Prabhu, S.V., 2019. "Performance enhancement of a Darrieus hydrokinetic turbine with the blocking of a specific flow region for optimum use of hydropower," Renewable Energy, Elsevier, vol. 135(C), pages 1144-1156.
    17. Delafin, P.-L. & Nishino, T. & Kolios, A. & Wang, L., 2017. "Comparison of low-order aerodynamic models and RANS CFD for full scale 3D vertical axis wind turbines," Renewable Energy, Elsevier, vol. 109(C), pages 564-575.
    18. Peng, H.Y. & Liu, H.J. & Yang, J.H., 2021. "A review on the wake aerodynamics of H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 232(C).
    19. Villeneuve, Thierry & Dumas, Guy, 2021. "Impact of some design considerations on the wake recovery of vertical-axis turbines," Renewable Energy, Elsevier, vol. 180(C), pages 1419-1438.
    20. Chen, Jian & Yang, Hongxing & Yang, Mo & Xu, Hongtao & Hu, Zuohuan, 2015. "A comprehensive review of the theoretical approaches for the airfoil design of lift-type vertical axis wind turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1709-1720.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:1954-:d:120279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.