IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v138y2017icp257-289.html
   My bibliography  Save this article

A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods

Author

Listed:
  • Thé, Jesse
  • Yu, Hesheng

Abstract

Wind energy plays a vital role in the development sustainable energy due to its vast availability, commercially ready technology, low cost, and great contribution to CO2 reduction. Wind turbines account for most of the cost involved in both onshore and offshore wind projects. Therefore, wind turbine aerodynamics is the backbone in the wind energy area as it is directly related to its performance. We first review and discuss available engineering models and the Reynolds-Averaged Navier Stokes (RANS) methods for wind turbine aerodynamics. The widely used momentum method is restricted significantly by the availability of reliable airfoil data and its empiricism. Potential flow methods are limited by its exclusion of viscous effect. RANS methods can produce reasonable integrated quantities, but fail to capture complex flow features such as separation and vortex shedding. The hybrid RANS-LES method (HRLM), which is a technique to bridge the gap between less accurate RANS and more computational costly LES method, is a remedy to turbine aerodynamics in complex flow conditions. We then present existing HRLMs and review their applications to wind turbine aerodynamics. They have obvious advantages over the RANS models in the prediction of flow unsteadiness. Finally, we recommend the best practice guidelines for the HRLM to facilitate and promote the implementation of the HRLMs for an improved understanding of flow physics around wind turbine blades. The enhanced knowledge of complex flow characteristics will further benefit subsequent aeroelastic and aeroacoustic analysis. Therefore, the HRLM is a promising tool for the research and development of wind turbine technology.

Suggested Citation

  • Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
  • Handle: RePEc:eee:energy:v:138:y:2017:i:c:p:257-289
    DOI: 10.1016/j.energy.2017.07.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217312033
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.07.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Y. & Sun, X.J. & Zhu, B. & Zhang, H.J. & Huang, D.G., 2016. "Effect of blade vortex interaction on performance of Darrieus-type cross flow marine current turbine," Renewable Energy, Elsevier, vol. 86(C), pages 316-323.
    2. Shakoor, Rabia & Hassan, Mohammad Yusri & Raheem, Abdur & Wu, Yuan-Kang, 2016. "Wake effect modeling: A review of wind farm layout optimization using Jensen׳s model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1048-1059.
    3. Tummala, Abhishiktha & Velamati, Ratna Kishore & Sinha, Dipankur Kumar & Indraja, V. & Krishna, V. Hari, 2016. "A review on small scale wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1351-1371.
    4. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    5. Eriksson, Sandra & Bernhoff, Hans & Leijon, Mats, 2008. "Evaluation of different turbine concepts for wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1419-1434, June.
    6. Rahman, Mahmudur & Ong, Zhi Chao & Chong, Wen Tong & Julai, Sabariah & Khoo, Shin Yee, 2015. "Performance enhancement of wind turbine systems with vibration control: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 43-54.
    7. McTavish, S. & Feszty, D. & Sankar, T., 2012. "Steady and rotating computational fluid dynamics simulations of a novel vertical axis wind turbine for small-scale power generation," Renewable Energy, Elsevier, vol. 41(C), pages 171-179.
    8. Yuan, Jiahai & Na, Chunning & Xu, Yan & Zhao, Changhong, 2015. "Wind turbine manufacturing in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1235-1244.
    9. Howell, Robert & Qin, Ning & Edwards, Jonathan & Durrani, Naveed, 2010. "Wind tunnel and numerical study of a small vertical axis wind turbine," Renewable Energy, Elsevier, vol. 35(2), pages 412-422.
    10. Daróczy, László & Janiga, Gábor & Petrasch, Klaus & Webner, Michael & Thévenin, Dominique, 2015. "Comparative analysis of turbulence models for the aerodynamic simulation of H-Darrieus rotors," Energy, Elsevier, vol. 90(P1), pages 680-690.
    11. Raciti Castelli, Marco & Englaro, Alessandro & Benini, Ernesto, 2011. "The Darrieus wind turbine: Proposal for a new performance prediction model based on CFD," Energy, Elsevier, vol. 36(8), pages 4919-4934.
    12. Lund, Henrik, 2007. "Renewable energy strategies for sustainable development," Energy, Elsevier, vol. 32(6), pages 912-919.
    13. Choudhry, Amanullah & Arjomandi, Maziar & Kelso, Richard, 2016. "Methods to control dynamic stall for wind turbine applications," Renewable Energy, Elsevier, vol. 86(C), pages 26-37.
    14. Balduzzi, Francesco & Drofelnik, Jernej & Bianchini, Alessandro & Ferrara, Giovanni & Ferrari, Lorenzo & Campobasso, Michele Sergio, 2017. "Darrieus wind turbine blade unsteady aerodynamics: a three-dimensional Navier-Stokes CFD assessment," Energy, Elsevier, vol. 128(C), pages 550-563.
    15. Hu, Danmei & Hua, Ouyang & Du, Zhaohui, 2006. "A study on stall-delay for horizontal axis wind turbine," Renewable Energy, Elsevier, vol. 31(6), pages 821-836.
    16. Alam, Md. Mahbub & Rehman, Shafiqur & Meyer, Josua P. & Al-Hadhrami, Luai M., 2011. "Review of 600–2500kW sized wind turbines and optimization of hub height for maximum wind energy yield realization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3839-3849.
    17. Joselin Herbert, G.M. & Iniyan, S. & Sreevalsan, E. & Rajapandian, S., 2007. "A review of wind energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1117-1145, August.
    18. Roy, Sukanta & Saha, Ujjwal K., 2013. "Review on the numerical investigations into the design and development of Savonius wind rotors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 73-83.
    19. Lloyd, Thomas P. & Turnock, Stephen R. & Humphrey, Victor F., 2014. "Assessing the influence of inflow turbulence on noise and performance of a tidal turbine using large eddy simulations," Renewable Energy, Elsevier, vol. 71(C), pages 742-754.
    20. Mathiesen, Brian Vad & Lund, Henrik & Karlsson, Kenneth, 2011. "100% Renewable energy systems, climate mitigation and economic growth," Applied Energy, Elsevier, vol. 88(2), pages 488-501, February.
    21. Rocha, P.A. Costa & Rocha, H.H. Barbosa & Carneiro, F.O. Moura & Vieira da Silva, M.E. & Bueno, A. Valente, 2014. "k–ω SST (shear stress transport) turbulence model calibration: A case study on a small scale horizontal axis wind turbine," Energy, Elsevier, vol. 65(C), pages 412-418.
    22. Xu, Jianzhong & He, Dexin & Zhao, Xiaolu, 2010. "Status and prospects of Chinese wind energy," Energy, Elsevier, vol. 35(11), pages 4439-4444.
    23. Bai, Chi-Jeng & Wang, Wei-Cheng, 2016. "Review of computational and experimental approaches to analysis of aerodynamic performance in horizontal-axis wind turbines (HAWTs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 506-519.
    24. Rolland, S. & Newton, W. & Williams, A.J. & Croft, T.N. & Gethin, D.T. & Cross, M., 2013. "Simulations technique for the design of a vertical axis wind turbine device with experimental validation," Applied Energy, Elsevier, vol. 111(C), pages 1195-1203.
    25. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2011. "The first step towards a 100% renewable energy-system for Ireland," Applied Energy, Elsevier, vol. 88(2), pages 502-507, February.
    26. Lanzafame, R. & Mauro, S. & Messina, M., 2013. "Wind turbine CFD modeling using a correlation-based transitional model," Renewable Energy, Elsevier, vol. 52(C), pages 31-39.
    27. Kim, Taehyung & Jeon, Minu & Lee, Soogab & Shin, Hyungki, 2014. "Numerical simulation of flatback airfoil aerodynamic noise," Renewable Energy, Elsevier, vol. 65(C), pages 192-201.
    28. Chen, Jian & Yang, Hongxing & Yang, Mo & Xu, Hongtao & Hu, Zuohuan, 2015. "A comprehensive review of the theoretical approaches for the airfoil design of lift-type vertical axis wind turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1709-1720.
    29. Miller, Aaron & Chang, Byungik & Issa, Roy & Chen, Gerald, 2013. "Review of computer-aided numerical simulation in wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 122-134.
    30. Tescione, G. & Ragni, D. & He, C. & Simão Ferreira, C.J. & van Bussel, G.J.W., 2014. "Near wake flow analysis of a vertical axis wind turbine by stereoscopic particle image velocimetry," Renewable Energy, Elsevier, vol. 70(C), pages 47-61.
    31. Edelenbosch, O.Y. & Kermeli, K. & Crijns-Graus, W. & Worrell, E. & Bibas, R. & Fais, B. & Fujimori, S. & Kyle, P. & Sano, F. & van Vuuren, D.P., 2017. "Comparing projections of industrial energy demand and greenhouse gas emissions in long-term energy models," Energy, Elsevier, vol. 122(C), pages 701-710.
    32. Lei, Hang & Zhou, Dai & Lu, Jiabao & Chen, Caiyong & Han, Zhaolong & Bao, Yan, 2017. "The impact of pitch motion of a platform on the aerodynamic performance of a floating vertical axis wind turbine," Energy, Elsevier, vol. 119(C), pages 369-383.
    33. Rezaeiha, Abdolrahim & Kalkman, Ivo & Blocken, Bert, 2017. "CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio: Guidelines for minimum domain size and azimuthal increment," Renewable Energy, Elsevier, vol. 107(C), pages 373-385.
    34. Jonathon Sumner & Christophe Sibuet Watters & Christian Masson, 2010. "CFD in Wind Energy: The Virtual, Multiscale Wind Tunnel," Energies, MDPI, vol. 3(5), pages 1-25, May.
    35. Singh, M.A. & Biswas, A. & Misra, R.D., 2015. "Investigation of self-starting and high rotor solidity on the performance of a three S1210 blade H-type Darrieus rotor," Renewable Energy, Elsevier, vol. 76(C), pages 381-387.
    36. Peng, H.Y. & Lam, H.F., 2016. "Turbulence effects on the wake characteristics and aerodynamic performance of a straight-bladed vertical axis wind turbine by wind tunnel tests and large eddy simulations," Energy, Elsevier, vol. 109(C), pages 557-568.
    37. Tjiu, Willy & Marnoto, Tjukup & Mat, Sohif & Ruslan, Mohd Hafidz & Sopian, Kamaruzzaman, 2015. "Darrieus vertical axis wind turbine for power generation I: Assessment of Darrieus VAWT configurations," Renewable Energy, Elsevier, vol. 75(C), pages 50-67.
    38. Jin, Xin & Zhao, Gaoyuan & Gao, KeJun & Ju, Wenbin, 2015. "Darrieus vertical axis wind turbine: Basic research methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 212-225.
    39. Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
    40. Karthikeyan, N. & Kalidasa Murugavel, K. & Arun Kumar, S. & Rajakumar, S., 2015. "Review of aerodynamic developments on small horizontal axis wind turbine blade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 801-822.
    41. Syed Ahmed Kabir, Ijaz Fazil & Ng, E.Y.K., 2017. "Insight into stall delay and computation of 3D sectional aerofoil characteristics of NREL phase VI wind turbine using inverse BEM and improvement in BEM analysis accounting for stall delay effect," Energy, Elsevier, vol. 120(C), pages 518-536.
    42. Li, Yuwei & Paik, Kwang-Jun & Xing, Tao & Carrica, Pablo M., 2012. "Dynamic overset CFD simulations of wind turbine aerodynamics," Renewable Energy, Elsevier, vol. 37(1), pages 285-298.
    43. Siddiqui, M. Salman & Durrani, Naveed & Akhtar, Imran, 2015. "Quantification of the effects of geometric approximations on the performance of a vertical axis wind turbine," Renewable Energy, Elsevier, vol. 74(C), pages 661-670.
    44. Dominguez, Favio & Achard, Jean-Luc & Zanette, Jerônimo & Corre, Christophe, 2016. "Fast power output prediction for a single row of ducted cross-flow water turbines using a BEM-RANS approach," Renewable Energy, Elsevier, vol. 89(C), pages 658-670.
    45. Xu, He-Yong & Qiao, Chen-Liang & Yang, Hui-Qiang & Ye, Zheng-Yin, 2017. "Delayed detached eddy simulation of the wind turbine airfoil S809 for angles of attack up to 90 degrees," Energy, Elsevier, vol. 118(C), pages 1090-1109.
    46. Ma, Ping & Lien, Fue-Sang & Yee, Eugene, 2017. "Coarse-resolution numerical prediction of small wind turbine noise with validation against field measurements," Renewable Energy, Elsevier, vol. 102(PB), pages 502-515.
    47. Kumar, Yogesh & Ringenberg, Jordan & Depuru, Soma Shekara & Devabhaktuni, Vijay K. & Lee, Jin Woo & Nikolaidis, Efstratios & Andersen, Brett & Afjeh, Abdollah, 2016. "Wind energy: Trends and enabling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 209-224.
    48. Balduzzi, Francesco & Bianchini, Alessandro & Maleci, Riccardo & Ferrara, Giovanni & Ferrari, Lorenzo, 2016. "Critical issues in the CFD simulation of Darrieus wind turbines," Renewable Energy, Elsevier, vol. 85(C), pages 419-435.
    49. Li, Chao & Zhu, Songye & Xu, You-lin & Xiao, Yiqing, 2013. "2.5D large eddy simulation of vertical axis wind turbine in consideration of high angle of attack flow," Renewable Energy, Elsevier, vol. 51(C), pages 317-330.
    50. Hernan Tinoco & Hernan Tinoco, 2010. "Numerical Simulation of Industrial Flows," Chapters, in: Lutz Angermann (ed.), Numerical Simulations - Examples and Applications in Computational Fluid Dynamics, IntechOpen.
    51. Mateus, Maria Margarida & do Vale, Mário & Rodrigues, Abel & Bordado, João Carlos & Galhano dos Santos, Rui, 2017. "Is biomass liquefaction an option for the viability of poplar short rotation coppices? A preliminary experimental approach," Energy, Elsevier, vol. 124(C), pages 40-45.
    52. Han, Jie & Ouyang, Leixin & Xu, Yuzhen & Zeng, Rong & Kang, Shushuo & Zhang, Guoqiang, 2016. "Current status of distributed energy system in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 288-297.
    53. Aslam Bhutta, Muhammad Mahmood & Hayat, Nasir & Farooq, Ahmed Uzair & Ali, Zain & Jamil, Sh. Rehan & Hussain, Zahid, 2012. "Vertical axis wind turbine – A review of various configurations and design techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1926-1939.
    54. Rossetti, A. & Pavesi, G., 2013. "Comparison of different numerical approaches to the study of the H-Darrieus turbines start-up," Renewable Energy, Elsevier, vol. 50(C), pages 7-19.
    55. Rocha, P. A. Costa & Rocha, H. H. Barbosa & Carneiro, F. O. Moura & da Silva, M. E. Vieira & de Andrade, C. Freitas, 2016. "A case study on the calibration of the k–ω SST (shear stress transport) turbulence model for small scale wind turbines designed with cambered and symmetrical airfoils," Energy, Elsevier, vol. 97(C), pages 144-150.
    56. Ackermann, Thomas & Söder, Lennart, 2002. "An overview of wind energy-status 2002," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(1-2), pages 67-127.
    57. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    58. Chehouri, Adam & Younes, Rafic & Ilinca, Adrian & Perron, Jean, 2015. "Review of performance optimization techniques applied to wind turbines," Applied Energy, Elsevier, vol. 142(C), pages 361-388.
    59. Göçmen, Tuhfe & Laan, Paul van der & Réthoré, Pierre-Elouan & Diaz, Alfredo Peña & Larsen, Gunner Chr. & Ott, Søren, 2016. "Wind turbine wake models developed at the technical university of Denmark: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 752-769.
    60. Aranake, Aniket C. & Lakshminarayan, Vinod K. & Duraisamy, Karthik, 2015. "Computational analysis of shrouded wind turbine configurations using a 3-dimensional RANS solver," Renewable Energy, Elsevier, vol. 75(C), pages 818-832.
    61. Ahmed, Noor A. & Cameron, Michael, 2014. "The challenges and possible solutions of horizontal axis wind turbines as a clean energy solution for the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 439-460.
    62. Lee, Jae-Hoon & Lee, Young-Tae & Lim, Hee-Chang, 2016. "Effect of twist angle on the performance of Savonius wind turbine," Renewable Energy, Elsevier, vol. 89(C), pages 231-244.
    63. de Azevedo, Henrique Dias Machado & Araújo, Alex Maurício & Bouchonneau, Nadège, 2016. "A review of wind turbine bearing condition monitoring: State of the art and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 368-379.
    64. Gharali, Kobra & Johnson, David A., 2012. "Numerical modeling of an S809 airfoil under dynamic stall, erosion and high reduced frequencies," Applied Energy, Elsevier, vol. 93(C), pages 45-52.
    65. Abdulqadir, Sherwan A. & Iacovides, Hector & Nasser, Adel, 2017. "The physical modelling and aerodynamics of turbulent flows around horizontal axis wind turbines," Energy, Elsevier, vol. 119(C), pages 767-799.
    66. Lund, Henrik & Østergaard, Poul Alberg & Stadler, Ingo, 2011. "Towards 100% renewable energy systems," Applied Energy, Elsevier, vol. 88(2), pages 419-421, February.
    67. Rezaeiha, Abdolrahim & Kalkman, Ivo & Blocken, Bert, 2017. "Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine," Applied Energy, Elsevier, vol. 197(C), pages 132-150.
    68. Akwa, João Vicente & Vielmo, Horácio Antonio & Petry, Adriane Prisco, 2012. "A review on the performance of Savonius wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3054-3064.
    69. Shonhiwa, Chipo & Makaka, Golden, 2016. "Concentrator Augmented Wind Turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1415-1418.
    70. Lam, H.F. & Peng, H.Y., 2016. "Study of wake characteristics of a vertical axis wind turbine by two- and three-dimensional computational fluid dynamics simulations," Renewable Energy, Elsevier, vol. 90(C), pages 386-398.
    71. Andrea Alaimo & Antonio Esposito & Antonio Messineo & Calogero Orlando & Davide Tumino, 2015. "3D CFD Analysis of a Vertical Axis Wind Turbine," Energies, MDPI, vol. 8(4), pages 1-21, April.
    72. Pope, K. & Rodrigues, V. & Doyle, R. & Tsopelas, A. & Gravelsins, R. & Naterer, G.F. & Tsang, E., 2010. "Effects of stator vanes on power coefficients of a zephyr vertical axis wind turbine," Renewable Energy, Elsevier, vol. 35(5), pages 1043-1051.
    73. Kamp, Linda M. & Vanheule, Lynn F.I., 2015. "Review of the small wind turbine sector in Kenya: Status and bottlenecks for growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 470-480.
    74. Bonalumi, Davide & Giuffrida, Antonio, 2016. "Investigations of an air-blown integrated gasification combined cycle fired with high-sulphur coal with post-combustion carbon capture by aqueous ammonia," Energy, Elsevier, vol. 117(P2), pages 439-449.
    75. Lydia, M. & Kumar, S. Suresh & Selvakumar, A. Immanuel & Prem Kumar, G. Edwin, 2014. "A comprehensive review on wind turbine power curve modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 452-460.
    76. Pierella, Fabio & Krogstad, Per-Åge & Sætran, Lars, 2014. "Blind Test 2 calculations for two in-line model wind turbines where the downstream turbine operates at various rotational speeds," Renewable Energy, Elsevier, vol. 70(C), pages 62-77.
    77. Zhong, Weiqiong & An, Haizhong & Shen, Lei & Dai, Tao & Fang, Wei & Gao, Xiangyun & Dong, Di, 2017. "Global pattern of the international fossil fuel trade: The evolution of communities," Energy, Elsevier, vol. 123(C), pages 260-270.
    78. Martinez-Luengo, Maria & Kolios, Athanasios & Wang, Lin, 2016. "Structural health monitoring of offshore wind turbines: A review through the Statistical Pattern Recognition Paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 91-105.
    79. Njiri, Jackson G. & Söffker, Dirk, 2016. "State-of-the-art in wind turbine control: Trends and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 377-393.
    80. Lanzafame, R. & Messina, M., 2007. "Fluid dynamics wind turbine design: Critical analysis, optimization and application of BEM theory," Renewable Energy, Elsevier, vol. 32(14), pages 2291-2305.
    81. McKenna, R. & Ostman v.d. Leye, P. & Fichtner, W., 2016. "Key challenges and prospects for large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1212-1221.
    82. Carrillo, C. & Obando Montaño, A.F. & Cidrás, J. & Díaz-Dorado, E., 2013. "Review of power curve modelling for wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 572-581.
    83. Benitz, M.A. & Lackner, M.A. & Schmidt, D.P., 2015. "Hydrodynamics of offshore structures with specific focus on wind energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 692-716.
    84. Islam, Mazharul & Ting, David S.-K. & Fartaj, Amir, 2008. "Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 1087-1109, May.
    85. Li, Y. & Castro, A.M. & Sinokrot, T. & Prescott, W. & Carrica, P.M., 2015. "Coupled multi-body dynamics and CFD for wind turbine simulation including explicit wind turbulence," Renewable Energy, Elsevier, vol. 76(C), pages 338-361.
    86. Mohamed, M.H., 2016. "Reduction of the generated aero-acoustics noise of a vertical axis wind turbine using CFD (Computational Fluid Dynamics) techniques," Energy, Elsevier, vol. 96(C), pages 531-544.
    87. Krogstad, Per-Åge & Eriksen, Pål Egil, 2013. "“Blind test” calculations of the performance and wake development for a model wind turbine," Renewable Energy, Elsevier, vol. 50(C), pages 325-333.
    88. Tjiu, Willy & Marnoto, Tjukup & Mat, Sohif & Ruslan, Mohd Hafidz & Sopian, Kamaruzzaman, 2015. "Darrieus vertical axis wind turbine for power generation II: Challenges in HAWT and the opportunity of multi-megawatt Darrieus VAWT development," Renewable Energy, Elsevier, vol. 75(C), pages 560-571.
    89. Zhang, Sufang & Wang, Wei & Wang, Lu & Zhao, Xiaoli, 2015. "Review of China’s wind power firms internationalization: Status quo, determinants, prospects and policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1333-1342.
    90. Mathiesen, Brian Vad & Lund, Henrik & Connolly, David, 2012. "Limiting biomass consumption for heating in 100% renewable energy systems," Energy, Elsevier, vol. 48(1), pages 160-168.
    91. García Márquez, Fausto Pedro & Tobias, Andrew Mark & Pinar Pérez, Jesús María & Papaelias, Mayorkinos, 2012. "Condition monitoring of wind turbines: Techniques and methods," Renewable Energy, Elsevier, vol. 46(C), pages 169-178.
    92. Bedon, Gabriele & Antonini, Enrico G.A. & De Betta, Stefano & Raciti Castelli, Marco & Benini, Ernesto, 2014. "Evaluation of the different aerodynamic databases for vertical axis wind turbine simulations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 386-399.
    93. Liu, W.Y. & Tang, B.P. & Han, J.G. & Lu, X.N. & Hu, N.N. & He, Z.Z., 2015. "The structure healthy condition monitoring and fault diagnosis methods in wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 466-472.
    94. Gnanasekaran, Sakthivel & Saravanan, N. & Ilangkumaran, M., 2016. "Influence of injection timing on performance, emission and combustion characteristics of a DI diesel engine running on fish oil biodiesel," Energy, Elsevier, vol. 116(P1), pages 1218-1229.
    95. Lin, San-Yih & Lin, Yang-You & Bai, Chi-Jeng & Wang, Wei-Cheng, 2016. "Performance analysis of vertical-axis-wind-turbine blade with modified trailing edge through computational fluid dynamics," Renewable Energy, Elsevier, vol. 99(C), pages 654-662.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hand, Brian & Kelly, Ger & Cashman, Andrew, 2021. "Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    2. Kumar, Rakesh & Raahemifar, Kaamran & Fung, Alan S., 2018. "A critical review of vertical axis wind turbines for urban applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 281-291.
    3. Li, Chao & Xiao, Yiqing & Xu, You-lin & Peng, Yi-xin & Hu, Gang & Zhu, Songye, 2018. "Optimization of blade pitch in H-rotor vertical axis wind turbines through computational fluid dynamics simulations," Applied Energy, Elsevier, vol. 212(C), pages 1107-1125.
    4. Peng, H.Y. & Liu, H.J. & Yang, J.H., 2021. "A review on the wake aerodynamics of H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 232(C).
    5. Ma, Ning & Lei, Hang & Han, Zhaolong & Zhou, Dai & Bao, Yan & Zhang, Kai & Zhou, Lei & Chen, Caiyong, 2018. "Airfoil optimization to improve power performance of a high-solidity vertical axis wind turbine at a moderate tip speed ratio," Energy, Elsevier, vol. 150(C), pages 236-252.
    6. Barnes, Andrew & Marshall-Cross, Daniel & Hughes, Ben Richard, 2021. "Towards a standard approach for future Vertical Axis Wind Turbine aerodynamics research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    7. Chen, Jian & Yang, Hongxing & Yang, Mo & Xu, Hongtao & Hu, Zuohuan, 2015. "A comprehensive review of the theoretical approaches for the airfoil design of lift-type vertical axis wind turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1709-1720.
    8. Manisha Sawant & Sameer Thakare & A. Prabhakara Rao & Andrés E. Feijóo-Lorenzo & Neeraj Dhanraj Bokde, 2021. "A Review on State-of-the-Art Reviews in Wind-Turbine- and Wind-Farm-Related Topics," Energies, MDPI, vol. 14(8), pages 1-30, April.
    9. Peng, H.Y. & Liu, M.N. & Liu, H.J. & Lin, K., 2022. "Optimization of twin vertical axis wind turbines through large eddy simulations and Taguchi method," Energy, Elsevier, vol. 240(C).
    10. Rezaeiha, Abdolrahim & Kalkman, Ivo & Blocken, Bert, 2017. "Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine," Applied Energy, Elsevier, vol. 197(C), pages 132-150.
    11. Liu, Qingsong & Miao, Weipao & Ye, Qi & Li, Chun, 2022. "Performance assessment of an innovative Gurney flap for straight-bladed vertical axis wind turbine," Renewable Energy, Elsevier, vol. 185(C), pages 1124-1138.
    12. Daniel Micallef & Gerard Van Bussel, 2018. "A Review of Urban Wind Energy Research: Aerodynamics and Other Challenges," Energies, MDPI, vol. 11(9), pages 1-27, August.
    13. Atlaschian, Omid & Metzger, M., 2021. "Numerical model of vertical axis wind turbine performance in realistic gusty wind conditions," Renewable Energy, Elsevier, vol. 165(P1), pages 211-223.
    14. Wong, Kok Hoe & Chong, Wen Tong & Poh, Sin Chew & Shiah, Yui-Chuin & Sukiman, Nazatul Liana & Wang, Chin-Tsan, 2018. "3D CFD simulation and parametric study of a flat plate deflector for vertical axis wind turbine," Renewable Energy, Elsevier, vol. 129(PA), pages 32-55.
    15. Lam, H.F. & Peng, H.Y., 2017. "Measurements of the wake characteristics of co- and counter-rotating twin H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 131(C), pages 13-26.
    16. Balduzzi, Francesco & Drofelnik, Jernej & Bianchini, Alessandro & Ferrara, Giovanni & Ferrari, Lorenzo & Campobasso, Michele Sergio, 2017. "Darrieus wind turbine blade unsteady aerodynamics: a three-dimensional Navier-Stokes CFD assessment," Energy, Elsevier, vol. 128(C), pages 550-563.
    17. Lei, Hang & Zhou, Dai & Bao, Yan & Chen, Caiyong & Ma, Ning & Han, Zhaolong, 2017. "Numerical simulations of the unsteady aerodynamics of a floating vertical axis wind turbine in surge motion," Energy, Elsevier, vol. 127(C), pages 1-17.
    18. Jin, Xin & Zhao, Gaoyuan & Gao, KeJun & Ju, Wenbin, 2015. "Darrieus vertical axis wind turbine: Basic research methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 212-225.
    19. Pierre Tchakoua & René Wamkeue & Mohand Ouhrouche & Tommy Andy Tameghe & Gabriel Ekemb, 2015. "A New Approach for Modeling Darrieus-Type Vertical Axis Wind Turbine Rotors Using Electrical Equivalent Circuit Analogy: Basis of Theoretical Formulations and Model Development," Energies, MDPI, vol. 8(10), pages 1-34, September.
    20. Zanforlin, Stefania & Deluca, Stefano, 2018. "Effects of the Reynolds number and the tip losses on the optimal aspect ratio of straight-bladed Vertical Axis Wind Turbines," Energy, Elsevier, vol. 148(C), pages 179-195.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:138:y:2017:i:c:p:257-289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.