IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i10p1498-d113297.html
   My bibliography  Save this article

Analytical Derivation of Electrical-Side Maximum Power Line for Wind Generators

Author

Listed:
  • Sergei Kolesnik

    (Department of Electrical Engineering and Electronics, Ariel University of Samaria, Ariel 40700, Israel)

  • Alon Kuperman

    (Department of Electrical Engineering and Electronics, Ariel University of Samaria, Ariel 40700, Israel
    Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel)

Abstract

In order to enhance the maximum power point tracking (MPPT) speed of solar generators, offline calculated maximum power line (MPL) is often used as a feed-forward signal added to the output of MPPT controller. MPL is nonlinear static electrical characteristic of renewable energy generators connecting all the maximum power points for given temperature. In this letter, electrical side MPL is derived for a typical wind turbine generator (WTG). It is shown that MPLs of solar and wind generators possess similar structure, supporting the similarity between the two energy conversion processes.

Suggested Citation

  • Sergei Kolesnik & Alon Kuperman, 2017. "Analytical Derivation of Electrical-Side Maximum Power Line for Wind Generators," Energies, MDPI, vol. 10(10), pages 1-6, September.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1498-:d:113297
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/10/1498/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/10/1498/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kolesnik, Sergei & Sitbon, Moshe & Gadelovits, Shlomo & Suntio, Teuvo & Kuperman, Alon, 2015. "Interfacing renewable energy sources for maximum power transfer—Part II: Dynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1771-1783.
    2. Kumar, Dipesh & Chatterjee, Kalyan, 2016. "A review of conventional and advanced MPPT algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 957-970.
    3. Minh Quan Duong & Francesco Grimaccia & Sonia Leva & Marco Mussetta & Kim Hung Le, 2015. "Improving Transient Stability in a Grid-Connected Squirrel-Cage Induction Generator Wind Turbine System Using a Fuzzy Logic Controller," Energies, MDPI, vol. 8(7), pages 1-22, June.
    4. Gadelovits, Shlomo & Kuperman, Alon & Sitbon, Moshe & Aharon, Ilan & Singer, Sigmond, 2014. "Interfacing renewable energy sources for maximum power transfer—Part I: Statics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 501-508.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thales Ramos & Manoel F. Medeiros Júnior & Ricardo Pinheiro & Arthur Medeiros, 2019. "Slip Control of a Squirrel Cage Induction Generator Driven by an Electromagnetic Frequency Regulator to Achieve the Maximum Power Point Tracking," Energies, MDPI, vol. 12(11), pages 1-19, June.
    2. Juliano C. L. da Silva & Thales Ramos & Manoel F. Medeiros Júnior, 2021. "Modeling and Harmonic Impact Mitigation of Grid-Connected SCIG Driven by an Electromagnetic Frequency Regulator," Energies, MDPI, vol. 14(15), pages 1-21, July.
    3. Teuvo Suntio & Tuomas Messo & Matias Berg & Henrik Alenius & Tommi Reinikka & Roni Luhtala & Kai Zenger, 2019. "Impedance-Based Interactions in Grid-Tied Three-Phase Inverters in Renewable Energy Applications," Energies, MDPI, vol. 12(3), pages 1-31, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tania García-Sánchez & Irene Muñoz-Benavente & Emilio Gómez-Lázaro & Ana Fernández-Guillamón, 2020. "Modelling Types 1 and 2 Wind Turbines Based on IEC 61400-27-1: Transient Response under Voltage Dips," Energies, MDPI, vol. 13(16), pages 1-19, August.
    2. Lineykin, Simon & Maslah, Kareem & Kuperman, Alon, 2020. "Manufacturer-data-only-based modeling and optimized design of thermoelectric harvesters operating at low temperature gradients," Energy, Elsevier, vol. 213(C).
    3. Alon Kuperman & Moshe Sitbon & Shlomo Gadelovits & Moshe Averbukh & Teuvo Suntio, 2015. "Single-Source Multi-Battery Solar Charger: Analysis and Stability Issues," Energies, MDPI, vol. 8(7), pages 1-24, June.
    4. Aharon, Ilan & Shmilovitz, Doron & Kuperman, Alon, 2017. "Multimode power processing interface for fuel cell range extender in battery powered vehicle," Applied Energy, Elsevier, vol. 204(C), pages 572-581.
    5. Arshdeep Singh & Shimi Sudha Letha, 2019. "Emerging energy sources for electric vehicle charging station," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(5), pages 2043-2082, October.
    6. Tai Li & Yanbo Wang & Sunan Sun & Huimin Qian & Leqiu Wang & Lei Wang & Yanxia Shen & Zhicheng Ji, 2023. "Fuzzy Active Disturbance Rejection-Based Virtual Inertia Control Strategy for Wind Farms," Energies, MDPI, vol. 16(10), pages 1-16, May.
    7. Zhicheng Lin & Song Zheng & Zhicheng Chen & Rong Zheng & Wang Zhang, 2019. "Application Research of the Parallel System Theory and the Data Engine Approach in Wind Energy Conversion System," Energies, MDPI, vol. 12(5), pages 1-20, March.
    8. Amira Elkodama & Amr Ismaiel & A. Abdellatif & S. Shaaban & Shigeo Yoshida & Mostafa A. Rushdi, 2023. "Control Methods for Horizontal Axis Wind Turbines (HAWT): State-of-the-Art Review," Energies, MDPI, vol. 16(17), pages 1-32, September.
    9. Jin Liu & Wenxiang Zhao & Jinghua Ji & Guohai Liu & Tao Tao, 2016. "A Novel Flux Focusing Magnetically Geared Machine with Reduced Eddy Current Loss," Energies, MDPI, vol. 9(11), pages 1-15, November.
    10. Dongran Song & Jian Yang & Mei Su & Anfeng Liu & Yao Liu & Young Hoon Joo, 2017. "A Comparison Study between Two MPPT Control Methods for a Large Variable-Speed Wind Turbine under Different Wind Speed Characteristics," Energies, MDPI, vol. 10(5), pages 1-18, May.
    11. Ganesh Mayilsamy & Balasubramani Natesan & Young Hoon Joo & Seong Ryong Lee, 2022. "Fast Terminal Synergetic Control of PMVG-Based Wind Energy Conversion System for Enhancing the Power Extraction Efficiency," Energies, MDPI, vol. 15(8), pages 1-22, April.
    12. Eyal Amer & Alon Kuperman & Teuvo Suntio, 2019. "Direct Fixed-Step Maximum Power Point Tracking Algorithms with Adaptive Perturbation Frequency," Energies, MDPI, vol. 12(3), pages 1-16, January.
    13. Matheus Schramm Dall’Asta & Telles Brunelli Lazzarin, 2024. "A Review of Fast Power-Reserve Control Techniques in Grid-Connected Wind Energy Conversion Systems," Energies, MDPI, vol. 17(2), pages 1-29, January.
    14. Vasudevan, Krishnakumar R. & Ramachandaramurthy, Vigna K. & Venugopal, Gomathi & Ekanayake, J.B. & Tiong, S.K., 2021. "Variable speed pumped hydro storage: A review of converters, controls and energy management strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    15. Bodha, Venugopal Reddy & Srujana, A. & Chandrashekar, O., 2018. "A modified H-bridge voltage source converter with Fault Ride Capability," Energy, Elsevier, vol. 165(PB), pages 1380-1391.
    16. Ukashatu Abubakar & Saad Mekhilef & Hazlie Mokhlis & Mehdi Seyedmahmoudian & Ben Horan & Alex Stojcevski & Hussain Bassi & Muhyaddin Jamal Hosin Rawa, 2018. "Transient Faults in Wind Energy Conversion Systems: Analysis, Modelling Methodologies and Remedies," Energies, MDPI, vol. 11(9), pages 1-33, August.
    17. Wollz, Danilo Henrique & da Silva, Sergio Augusto Oliveira & Sampaio, Leonardo Poltronieri, 2020. "Real-time monitoring of an electronic wind turbine emulator based on the dynamic PMSG model using a graphical interface," Renewable Energy, Elsevier, vol. 155(C), pages 296-308.
    18. Ram, J.Prasanth & Rajasekar, N. & Miyatake, Masafumi, 2017. "Design and overview of maximum power point tracking techniques in wind and solar photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1138-1159.
    19. Mircea Neagoe & Radu Saulescu & Codruta Jaliu, 2019. "Design and Simulation of a 1 DOF Planetary Speed Increaser for Counter-Rotating Wind Turbines with Counter-Rotating Electric Generators," Energies, MDPI, vol. 12(9), pages 1-19, May.
    20. Shrabani Sahu & Sasmita Behera, 2022. "A review on modern control applications in wind energy conversion system," Energy & Environment, , vol. 33(2), pages 223-262, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1498-:d:113297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.