IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i7p6328-6349d51641.html
   My bibliography  Save this article

Improving Transient Stability in a Grid-Connected Squirrel-Cage Induction Generator Wind Turbine System Using a Fuzzy Logic Controller

Author

Listed:
  • Minh Quan Duong

    (Politecnico di Milano, Dipartimento di Energia, Via La Masa 34, 20156 Milano, Italy
    Department of Electrical Engineering, University of Science and Technology—The University of Da Nang, Block A, 54 Nguyen Luong Bang Street, LienChieu District, DaNang City 59000, Vietnam)

  • Francesco Grimaccia

    (Politecnico di Milano, Dipartimento di Energia, Via La Masa 34, 20156 Milano, Italy)

  • Sonia Leva

    (Politecnico di Milano, Dipartimento di Energia, Via La Masa 34, 20156 Milano, Italy)

  • Marco Mussetta

    (Politecnico di Milano, Dipartimento di Energia, Via La Masa 34, 20156 Milano, Italy)

  • Kim Hung Le

    (Department of Electrical Engineering, University of Science and Technology—The University of Da Nang, Block A, 54 Nguyen Luong Bang Street, LienChieu District, DaNang City 59000, Vietnam)

Abstract

A common problem in wind power plants involves fixed-speed wind turbines. In fact, being equipped with a squirrel-cage induction generator (SCIG), they tend to drain a relevant amount of reactive power from the grid, potentially causing voltage drops and possible voltage instability. To improve SCIG power quality and transient stability, this paper investigates a new control strategy for pitch angle control based on proportional-integral (PI) controller and a fuzzy logic controller (FLC), considering both normal and fault ride-through (FRT) schemes. In the literature, often, the mechanical torque output is assumed constant for a specific wind speed. This might not be accurate, because the mechanical torque-speed typical of a wind turbine depends also on the power coefficient or pitch angle. In this paper, an analytic model of transient stability is proposed using the equivalent circuit of the SCIG and using the concepts of stable and unstable electrical-mechanical equilibrium. The method has been evaluated by comparing the results obtained by the analytic method with the dynamic simulation. The results show that the proposed hybrid controller is effective at smoothing the output power and complying with FRT requirements for SCIG in the power system.

Suggested Citation

  • Minh Quan Duong & Francesco Grimaccia & Sonia Leva & Marco Mussetta & Kim Hung Le, 2015. "Improving Transient Stability in a Grid-Connected Squirrel-Cage Induction Generator Wind Turbine System Using a Fuzzy Logic Controller," Energies, MDPI, vol. 8(7), pages 1-22, June.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:7:p:6328-6349:d:51641
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/7/6328/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/7/6328/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rahimi, Mohsen & Parniani, Mostafa, 2009. "Dynamic behavior and transient stability analysis of fixed speed wind turbines," Renewable Energy, Elsevier, vol. 34(12), pages 2613-2624.
    2. Ulas Eminoglu & Saffet Ayasun, 2014. "Modeling and Design Optimization of Variable-Speed Wind Turbine Systems," Energies, MDPI, vol. 7(1), pages 1-18, January.
    3. Rui You & Braulio Barahona & Jianyun Chai & Nicolaos A. Cutululis, 2013. "A Novel Wind Turbine Concept Based on an Electromagnetic Coupler and the Study of Its Fault Ride-through Capability," Energies, MDPI, vol. 6(11), pages 1-17, November.
    4. Jayashri, R. & Kumudini Devi, R.P., 2009. "Effect of tuned unified power flow controller to mitigate the rotor speed instability of fixed-speed wind turbines," Renewable Energy, Elsevier, vol. 34(3), pages 591-596.
    5. Nicolae Golovanov & George Cristian Lazaroiu & Mariacristina Roscia & Dario Zaninelli, 2013. "Power Quality Assessment in Small Scale Renewable Energy Sources Supplying Distribution Systems," Energies, MDPI, vol. 6(2), pages 1-12, January.
    6. Andrés Felipe Obando-Montaño & Camilo Carrillo & José Cidrás & Eloy Díaz-Dorado, 2014. "A STATCOM with Supercapacitors for Low-Voltage Ride-Through in Fixed-Speed Wind Turbines," Energies, MDPI, vol. 7(9), pages 1-31, September.
    7. Li, H. & Zhao, B. & Yang, C. & Chen, H.W. & Chen, Z., 2011. "Analysis and estimation of transient stability for a grid-connected wind turbine with induction generator," Renewable Energy, Elsevier, vol. 36(5), pages 1469-1476.
    8. Lahaçani, N. Aouzellag & Aouzellag, D. & Mendil, B., 2010. "Static compensator for maintaining voltage stability of wind farm integration to a distribution network," Renewable Energy, Elsevier, vol. 35(11), pages 2476-2482.
    9. Duong, Minh Quan & Grimaccia, Francesco & Leva, Sonia & Mussetta, Marco & Ogliari, Emanuele, 2014. "Pitch angle control using hybrid controller for all operating regions of SCIG wind turbine system," Renewable Energy, Elsevier, vol. 70(C), pages 197-203.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoliang Yang & Guorong Liu & Anping Li & Le Van Dai, 2017. "A Predictive Power Control Strategy for DFIGs Based on a Wind Energy Converter System," Energies, MDPI, vol. 10(8), pages 1-24, July.
    2. Hwanik Lee & Moonsung Bae & Byongjun Lee, 2017. "Advanced Reactive Power Reserve Management Scheme to Enhance LVRT Capability," Energies, MDPI, vol. 10(10), pages 1-15, October.
    3. Nuria Novas & Alfredo Alcayde & Isabel Robalo & Francisco Manzano-Agugliaro & Francisco G. Montoya, 2020. "Energies and Its Worldwide Research," Energies, MDPI, vol. 13(24), pages 1-41, December.
    4. Muhammad Murtadha Othman & Nur Ashida Salim & Ismail Musirin, 2017. "Sustainability from the Occurrence of Critical Dynamic Power System Blackout Determined by Using the Stochastic Event Tree Technique," Sustainability, MDPI, vol. 9(6), pages 1-17, June.
    5. Radu Saulescu & Mircea Neagoe & Codruta Jaliu, 2018. "Conceptual Synthesis of Speed Increasers for Wind Turbine Conversion Systems," Energies, MDPI, vol. 11(9), pages 1-33, August.
    6. Mircea Neagoe & Radu Saulescu & Codruta Jaliu, 2019. "Design and Simulation of a 1 DOF Planetary Speed Increaser for Counter-Rotating Wind Turbines with Counter-Rotating Electric Generators," Energies, MDPI, vol. 12(9), pages 1-19, May.
    7. Sergei Kolesnik & Alon Kuperman, 2017. "Analytical Derivation of Electrical-Side Maximum Power Line for Wind Generators," Energies, MDPI, vol. 10(10), pages 1-6, September.
    8. Jamal Abd Ali & Mahammad A Hannan & Azah Mohamed, 2015. "A Novel Quantum-Behaved Lightning Search Algorithm Approach to Improve the Fuzzy Logic Speed Controller for an Induction Motor Drive," Energies, MDPI, vol. 8(11), pages 1-25, November.
    9. Esteban Ferrer & Oliver M.F. Browne & Eusebio Valero, 2017. "Sensitivity Analysis to Control the Far-Wake Unsteadiness Behind Turbines," Energies, MDPI, vol. 10(10), pages 1-21, October.
    10. Mohamed Zribi & Muthana Alrifai & Mohamed Rayan, 2017. "Sliding Mode Control of a Variable- Speed Wind Energy Conversion System Using a Squirrel Cage Induction Generator," Energies, MDPI, vol. 10(5), pages 1-21, May.
    11. Ukashatu Abubakar & Saad Mekhilef & Hazlie Mokhlis & Mehdi Seyedmahmoudian & Ben Horan & Alex Stojcevski & Hussain Bassi & Muhyaddin Jamal Hosin Rawa, 2018. "Transient Faults in Wind Energy Conversion Systems: Analysis, Modelling Methodologies and Remedies," Energies, MDPI, vol. 11(9), pages 1-33, August.
    12. Bingtuan Gao & Chaopeng Xia & Ning Chen & Khalid Mehmood Cheema & Libin Yang & Chunlai Li, 2017. "Virtual Synchronous Generator Based Auxiliary Damping Control Design for the Power System with Renewable Generation," Energies, MDPI, vol. 10(8), pages 1-21, August.
    13. Jaber Valinejad & Mousa Marzband & Mudathir Funsho Akorede & Ian D Elliott & Radu Godina & João Carlos de Oliveira Matias & Edris Pouresmaeil, 2018. "Long-Term Decision on Wind Investment with Considering Different Load Ranges of Power Plant for Sustainable Electricity Energy Market," Sustainability, MDPI, vol. 10(10), pages 1-19, October.
    14. Jin Liu & Wenxiang Zhao & Jinghua Ji & Guohai Liu & Tao Tao, 2016. "A Novel Flux Focusing Magnetically Geared Machine with Reduced Eddy Current Loss," Energies, MDPI, vol. 9(11), pages 1-15, November.
    15. Tania García-Sánchez & Irene Muñoz-Benavente & Emilio Gómez-Lázaro & Ana Fernández-Guillamón, 2020. "Modelling Types 1 and 2 Wind Turbines Based on IEC 61400-27-1: Transient Response under Voltage Dips," Energies, MDPI, vol. 13(16), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramirez, Dionisio & Martinez, Sergio & Blazquez, Francisco & Carrero, Carmelo, 2012. "Use of STATCOM in wind farms with fixed-speed generators for grid code compliance," Renewable Energy, Elsevier, vol. 37(1), pages 202-212.
    2. Carunaiselvane, C. & Chelliah, Thanga Raj, 2017. "Present trends and future prospects of asynchronous machines in renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1028-1041.
    3. Niancheng Zhou & Fan Ye & Qianggang Wang & Xiaoxuan Lou & Yuxiang Zhang, 2016. "Short-Circuit Calculation in Distribution Networks with Distributed Induction Generators," Energies, MDPI, vol. 9(4), pages 1-21, April.
    4. You, Rui & Yuan, Xibo & Li, Xueqing, 2022. "A multi-rotor medium-voltage wind turbine system and its control strategy," Renewable Energy, Elsevier, vol. 186(C), pages 366-377.
    5. Guerine, A. & El Hami, A. & Walha, L. & Fakhfakh, T. & Haddar, M., 2017. "Dynamic response of wind turbine gear system with uncertain-but-bounded parameters using interval analysis method," Renewable Energy, Elsevier, vol. 113(C), pages 679-687.
    6. Rusu, Eugen & Onea, Florin, 2019. "A parallel evaluation of the wind and wave energy resources along the Latin American and European coastal environments," Renewable Energy, Elsevier, vol. 143(C), pages 1594-1607.
    7. Domínguez-García, José Luis & Gomis-Bellmunt, Oriol & Bianchi, Fernando D. & Sumper, Andreas, 2012. "Power oscillation damping supported by wind power: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4994-5006.
    8. Amira Elkodama & Amr Ismaiel & A. Abdellatif & S. Shaaban & Shigeo Yoshida & Mostafa A. Rushdi, 2023. "Control Methods for Horizontal Axis Wind Turbines (HAWT): State-of-the-Art Review," Energies, MDPI, vol. 16(17), pages 1-32, September.
    9. Ramirez, Dionisio & Martinez-Rodrigo, Fernando & de Pablo, Santiago & Carlos Herrero-de Lucas, Luis, 2017. "Assessment of a non linear current control technique applied to MMC-HVDC during grid disturbances," Renewable Energy, Elsevier, vol. 101(C), pages 945-963.
    10. Chen, Diyi & Liu, Si & Ma, Xiaoyi, 2013. "Modeling, nonlinear dynamical analysis of a novel power system with random wind power and it's control," Energy, Elsevier, vol. 53(C), pages 139-146.
    11. Deyi Fu & Lingxing Kong & Lice Gong & Anqing Wang & Haikun Jia & Na Zhao, 2023. "Wind Turbine Load Optimization Control Strategy Based on LIDAR Feed-Forward Control for Primary Frequency Modulation Process with Pitch Angle Reservation," Energies, MDPI, vol. 16(1), pages 1-14, January.
    12. Gao, Richie & Gao, Zhiwei, 2016. "Pitch control for wind turbine systems using optimization, estimation and compensation," Renewable Energy, Elsevier, vol. 91(C), pages 501-515.
    13. Dawid Buła & Dariusz Grabowski & Andrzej Lange & Marcin Maciążek & Marian Pasko, 2020. "Long- and Short-Term Comparative Analysis of Renewable Energy Sources," Energies, MDPI, vol. 13(14), pages 1-18, July.
    14. Ukashatu Abubakar & Saad Mekhilef & Hazlie Mokhlis & Mehdi Seyedmahmoudian & Ben Horan & Alex Stojcevski & Hussain Bassi & Muhyaddin Jamal Hosin Rawa, 2018. "Transient Faults in Wind Energy Conversion Systems: Analysis, Modelling Methodologies and Remedies," Energies, MDPI, vol. 11(9), pages 1-33, August.
    15. Mohd Zin, Abdullah Asuhaimi B. & Pesaran H.A., Mahmoud & Khairuddin, Azhar B. & Jahanshaloo, Leila & Shariati, Omid, 2013. "An overview on doubly fed induction generators′ controls and contributions to wind based electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 692-708.
    16. Jun Dong & Shengnan Li & Shuijun Wu & Tingyi He & Bo Yang & Hongchun Shu & Jilai Yu, 2017. "Nonlinear Observer-Based Robust Passive Control of Doubly-Fed Induction Generators for Power System Stability Enhancement via Energy Reshaping," Energies, MDPI, vol. 10(8), pages 1-16, July.
    17. Jingjing Bai & Wei Gu & Xiaodong Yuan & Qun Li & Feng Xue & Xuchong Wang, 2015. "Power Quality Prediction, Early Warning, and Control for Points of Common Coupling with Wind Farms," Energies, MDPI, vol. 8(9), pages 1-18, August.
    18. Antonio Camacho & Miguel Castilla & Franco Canziani & Carlos Moreira & Paulo Coelho & Mario Gomes & Pedro E. Mercado, 2017. "Performance Comparison of Grid-Faulty Control Schemes for Inverter-Based Industrial Microgrids," Energies, MDPI, vol. 10(12), pages 1-25, December.
    19. Longfu Luo & Xiaofeng Zhang & Dongran Song & Weiyi Tang & Jian Yang & Li Li & Xiaoyu Tian & Wu Wen, 2018. "Optimal Design of Rated Wind Speed and Rotor Radius to Minimizing the Cost of Energy for Offshore Wind Turbines," Energies, MDPI, vol. 11(10), pages 1-17, October.
    20. Veganzones, C. & Sanchez, J.A. & Martinez, S. & Platero, C.A. & Blazquez, F. & Ramirez, D. & Arribas, J.R. & Merino, J. & Herrero, N. & Gordillo, F., 2011. "Voltage dip generator for testing wind turbines connected to electrical networks," Renewable Energy, Elsevier, vol. 36(5), pages 1588-1594.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:7:p:6328-6349:d:51641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.