IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i11p2100-d236318.html
   My bibliography  Save this article

Slip Control of a Squirrel Cage Induction Generator Driven by an Electromagnetic Frequency Regulator to Achieve the Maximum Power Point Tracking

Author

Listed:
  • Thales Ramos

    (Federal Institute of Education, Science and Technology of Rio Grande do Norte, Natal 59015-000, Brazil)

  • Manoel F. Medeiros Júnior

    (Federal University of Rio Grande do Norte, Natal 59078-970, Brazil)

  • Ricardo Pinheiro

    (Federal University of Rio Grande do Norte, Natal 59078-970, Brazil)

  • Arthur Medeiros

    (Federal Institute of Education, Science and Technology of Rio Grande do Norte, Natal 59015-000, Brazil)

Abstract

A new topology was recently developed to drive generators, aiming to avoid power electronic devices directly connected to the grid, and making possible the hybridization of the wind power with other sources. The system is composed by an induction machine with rotor in squirrel cage, and a rotating armature endowed with a three-phase winding that may be fed by a secondary source. The previous purpose was to convert a variable velocity imposed by the wind turbine to the armature in a constant velocity to be developed by the cage rotor, driving a shaft of synchronous generator. This article proposes the use of an induction generator instead of a synchronous one in order to explore the maximum available wind energy (MPPT). The simulation results show that the proposed topology is viable and supports both variations in wind speed and disturbances in power grid.

Suggested Citation

  • Thales Ramos & Manoel F. Medeiros Júnior & Ricardo Pinheiro & Arthur Medeiros, 2019. "Slip Control of a Squirrel Cage Induction Generator Driven by an Electromagnetic Frequency Regulator to Achieve the Maximum Power Point Tracking," Energies, MDPI, vol. 12(11), pages 1-19, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2100-:d:236318
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/11/2100/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/11/2100/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Minh Quan Duong & Sonia Leva & Marco Mussetta & Kim Hung Le, 2018. "A Comparative Study on Controllers for Improving Transient Stability of DFIG Wind Turbines During Large Disturbances," Energies, MDPI, vol. 11(3), pages 1-18, February.
    2. Rui You & Braulio Barahona & Jianyun Chai & Nicolaos A. Cutululis, 2013. "A Novel Wind Turbine Concept Based on an Electromagnetic Coupler and the Study of Its Fault Ride-through Capability," Energies, MDPI, vol. 6(11), pages 1-17, November.
    3. Florentino Chavira & S. Ortega-Cisneros & Jorge Rivera, 2017. "A Novel Sliding Mode Control Scheme for a PMSG-Based Variable Speed Wind Energy Conversion System," Energies, MDPI, vol. 10(10), pages 1-13, September.
    4. Héctor García & Juan Segundo & Osvaldo Rodríguez-Hernández & Rafael Campos-Amezcua & Oscar Jaramillo, 2018. "Harmonic Modelling of the Wind Turbine Induction Generator for Dynamic Analysis of Power Quality," Energies, MDPI, vol. 11(1), pages 1-19, January.
    5. Sergei Kolesnik & Alon Kuperman, 2017. "Analytical Derivation of Electrical-Side Maximum Power Line for Wind Generators," Energies, MDPI, vol. 10(10), pages 1-6, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel C. C. Crisóstomo & Thiago F. do Nascimento & Evandro A. D. F. Nunes & Elmer Villarreal & Ricardo Pinheiro & Andrés Salazar, 2022. "Fuzzy Control Strategy Applied to an Electromagnetic Frequency Regulator in Wind Generation Systems," Energies, MDPI, vol. 15(19), pages 1-21, September.
    2. Thiago F. do Nascimento & Evandro A. D. F. Nunes & Elmer R. L. Villarreal & Ricardo F. Pinheiro & Andrés O. Salazar, 2022. "Performance Analysis of an Electromagnetic Frequency Regulator under Parametric Variations for Wind System Applications," Energies, MDPI, vol. 15(8), pages 1-27, April.
    3. Arthur Medeiros & Thales Ramos & José Tavares de Oliveira & Manoel F. Medeiros Júnior, 2020. "Direct Voltage Control of a Doubly Fed Induction Generator by Means of Optimal Strategy," Energies, MDPI, vol. 13(3), pages 1-28, February.
    4. Juliano C. L. da Silva & Thales Ramos & Manoel F. Medeiros Júnior, 2021. "Modeling and Harmonic Impact Mitigation of Grid-Connected SCIG Driven by an Electromagnetic Frequency Regulator," Energies, MDPI, vol. 14(15), pages 1-21, July.
    5. Piotr Drozdowski & Dariusz Cholewa, 2021. "Voltage Control of Multiphase Cage Induction Generators at a Speed Varying over a Wide Range," Energies, MDPI, vol. 14(21), pages 1-24, October.
    6. Zahoor Ul Islam & Muhammad Tahir & Waqar Adil Syed & Fakhra Aziz & Fazal Wahab & Suhana Mohd Said & Mahidur R. Sarker & Sawal Hamid Md Ali & Mohd Faizul Mohd Sabri, 2020. "Fabrication and Photovoltaic Properties of Organic Solar Cell Based on Zinc Phthalocyanine," Energies, MDPI, vol. 13(4), pages 1-14, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juliano C. L. da Silva & Thales Ramos & Manoel F. Medeiros Júnior, 2021. "Modeling and Harmonic Impact Mitigation of Grid-Connected SCIG Driven by an Electromagnetic Frequency Regulator," Energies, MDPI, vol. 14(15), pages 1-21, July.
    2. Ukashatu Abubakar & Saad Mekhilef & Hazlie Mokhlis & Mehdi Seyedmahmoudian & Ben Horan & Alex Stojcevski & Hussain Bassi & Muhyaddin Jamal Hosin Rawa, 2018. "Transient Faults in Wind Energy Conversion Systems: Analysis, Modelling Methodologies and Remedies," Energies, MDPI, vol. 11(9), pages 1-33, August.
    3. You, Rui & Yuan, Xibo & Li, Xueqing, 2022. "A multi-rotor medium-voltage wind turbine system and its control strategy," Renewable Energy, Elsevier, vol. 186(C), pages 366-377.
    4. Mansoor Soomro & Zubair Ahmed Memon & Mazhar Hussain Baloch & Nayyar Hussain Mirjat & Laveet Kumar & Quynh T. Tran & Gaetano Zizzo, 2023. "Performance Improvement of Grid-Integrated Doubly Fed Induction Generator under Asymmetrical and Symmetrical Faults," Energies, MDPI, vol. 16(8), pages 1-20, April.
    5. Mircea Neagoe & Radu Saulescu & Codruta Jaliu, 2019. "Design and Simulation of a 1 DOF Planetary Speed Increaser for Counter-Rotating Wind Turbines with Counter-Rotating Electric Generators," Energies, MDPI, vol. 12(9), pages 1-19, May.
    6. Minh Ly Duc & Petr Bilik & Radek Martinek, 2023. "Harmonics Signal Feature Extraction Techniques: A Review," Mathematics, MDPI, vol. 11(8), pages 1-36, April.
    7. Javier Carroquino & José-Luis Bernal-Agustín & Rodolfo Dufo-López, 2019. "Standalone Renewable Energy and Hydrogen in an Agricultural Context: A Demonstrative Case," Sustainability, MDPI, vol. 11(4), pages 1-25, February.
    8. Zhijie Liu & Kejun Li & Yuanyuan Sun & Jinyu Wang & Zhuodi Wang & Kaiqi Sun & Meiyan Wang, 2018. "A Steady-State Analysis Method for Modular Multilevel Converters Connected to Permanent Magnet Synchronous Generator-Based Wind Energy Conversion Systems," Energies, MDPI, vol. 11(2), pages 1-31, February.
    9. D. Flynn & Z. Rather & A. Ardal & S. D'Arco & A.D. Hansen & N.A. Cutululis & P. Sorensen & A. Estanquiero & E. Gómez & N. Menemenlis & C. Smith & Ye Wang, 2017. "Technical impacts of high penetration levels of wind power on power system stability," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(2), March.
    10. Koldo Redondo & José Julio Gutiérrez & Izaskun Azcarate & Purificación Saiz & Luis Alberto Leturiondo & Sofía Ruiz de Gauna, 2019. "Experimental Study of the Summation of Flicker Caused by Wind Turbines," Energies, MDPI, vol. 12(12), pages 1-13, June.
    11. You, Rui & Barahona, Braulio & Chai, Jianyun & Cutululis, Nicolaos A., 2015. "Frequency support capability of variable speed wind turbine based on electromagnetic coupler," Renewable Energy, Elsevier, vol. 74(C), pages 681-688.
    12. Fenglin Miao & Hongsheng Shi & Xiaoqing Zhang, 2015. "Impact of the Converter Control Strategies on the Drive Train of Wind Turbine during Voltage Dips," Energies, MDPI, vol. 8(10), pages 1-18, October.
    13. Arthur Medeiros & Thales Ramos & José Tavares de Oliveira & Manoel F. Medeiros Júnior, 2020. "Direct Voltage Control of a Doubly Fed Induction Generator by Means of Optimal Strategy," Energies, MDPI, vol. 13(3), pages 1-28, February.
    14. Nikola Lopac & Neven Bulic & Niksa Vrkic, 2019. "Sliding Mode Observer-Based Load Angle Estimation for Salient-Pole Wound Rotor Synchronous Generators," Energies, MDPI, vol. 12(9), pages 1-22, April.
    15. Juan I. Talpone & Paul F. Puleston & Marcelo G. Cendoya & José. A. Barrado-Rodrigo, 2019. "A Dual-Stator Winding Induction Generator Based Wind-Turbine Controlled via Super-Twisting Sliding Mode," Energies, MDPI, vol. 12(23), pages 1-20, November.
    16. Ahmed G. Abo-Khalil & Ali S. Alghamdi & Ali M. Eltamaly & M. S. Al-Saud & Praveen R. P. & Khairy Sayed & G. R. Bindu & Iskander Tlili, 2019. "Design of State Feedback Current Controller for Fast Synchronization of DFIG in Wind Power Generation Systems," Energies, MDPI, vol. 12(12), pages 1-26, June.
    17. David J. Rincon & Maria A. Mantilla & Juan M. Rey & Miguel Garnica & Damien Guilbert, 2023. "An Overview of Flexible Current Control Strategies Applied to LVRT Capability for Grid-Connected Inverters," Energies, MDPI, vol. 16(3), pages 1-20, January.
    18. You, Rui & Barahona, Braulio & Chai, Jianyun & Cutululis, Nicolaos A. & Wu, Xinzhen, 2017. "Improvement of grid frequency dynamic characteristic with novel wind turbine based on electromagnetic coupler," Renewable Energy, Elsevier, vol. 113(C), pages 813-821.
    19. Radu Saulescu & Mircea Neagoe & Codruta Jaliu, 2018. "Conceptual Synthesis of Speed Increasers for Wind Turbine Conversion Systems," Energies, MDPI, vol. 11(9), pages 1-33, August.
    20. Mojtaba Nasiri & Saleh Mobayen & Behdad Faridpak & Afef Fekih & Arthur Chang, 2020. "Small-Signal Modeling of PMSG-Based Wind Turbine for Low Voltage Ride-Through and Artificial Intelligent Studies," Energies, MDPI, vol. 13(24), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2100-:d:236318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.