IDEAS home Printed from https://ideas.repec.org/a/gam/jchals/v8y2017i1p8-d93174.html
   My bibliography  Save this article

Hydrides as High Capacity Anodes in Lithium Cells: An Italian “Futuro in Ricerca di Base FIRB-2010” Project

Author

Listed:
  • Sergio Brutti

    (Dipartimento di Scienze, Università della Basilicata, Potenza 85100, Italy
    ISC-CNR (Instituto dei Sistemi Complessi-Consiglio Nazionale delle Ricerche), Roma 00185, Italy)

  • Stefania Panero

    (Dipartimento di Chimica, Università di Roma La Sapienza, Rome 24098, Italy)

  • Annalisa Paolone

    (ISC-CNR (Instituto dei Sistemi Complessi-Consiglio Nazionale delle Ricerche), Roma 00185, Italy)

  • Sara Gatto

    (ISC-CNR (Instituto dei Sistemi Complessi-Consiglio Nazionale delle Ricerche), Roma 00185, Italy)

  • Daniele Meggiolaro

    (ISC-CNR (Instituto dei Sistemi Complessi-Consiglio Nazionale delle Ricerche), Roma 00185, Italy
    Dipartimento di Chimica, Università di Roma La Sapienza, Rome 24098, Italy)

  • Francesco M. Vitucci

    (ISC-CNR (Instituto dei Sistemi Complessi-Consiglio Nazionale delle Ricerche), Roma 00185, Italy)

  • Jessica Manzi

    (Dipartimento di Scienze, Università della Basilicata, Potenza 85100, Italy
    ISC-CNR (Instituto dei Sistemi Complessi-Consiglio Nazionale delle Ricerche), Roma 00185, Italy)

  • David Munaò

    (Dipartimento di Chimica, Università di Roma La Sapienza, Rome 24098, Italy)

  • Laura Silvestri

    (Dipartimento di Chimica, Università di Roma La Sapienza, Rome 24098, Italy)

  • Luca Farina

    (Dipartimento di Chimica, Università di Roma La Sapienza, Rome 24098, Italy)

  • Priscilla Reale

    (ENEA Centro Ricerche Frascati, Frascati 00044, Italy)

Abstract

Automotive and stationary energy storage are among the most recently-proposed and still unfulfilled applications for lithium ion devices. Higher energy, power and superior safety standards, well beyond the present state of the art, are actually required to extend the Li-ion battery market to these challenging fields, but such a goal can only be achieved by the development of new materials with improved performances. Focusing on the negative electrode materials, alloying and conversion chemistries have been widely explored in the last decade to circumvent the main weakness of the intercalation processes: the limitation in capacity to one or at most two lithium atoms per host formula unit. Among all of the many proposed conversion chemistries, hydrides have been proposed and investigated since 2008. In lithium cells, these materials undergo a conversion reaction that gives metallic nanoparticles surrounded by an amorphous matrix of LiH. Among all of the reported conversion materials, hydrides have outstanding theoretical properties and have been only marginally explored, thus making this class of materials an interesting playground for both fundamental and applied research. In this review, we illustrate the most relevant results achieved in the frame of the Italian National Research Project FIRB 2010 Futuro in Ricerca “Hydrides as high capacity anodes in lithium cells” and possible future perspectives of research for this class of materials in electrochemical energy storage devices.

Suggested Citation

  • Sergio Brutti & Stefania Panero & Annalisa Paolone & Sara Gatto & Daniele Meggiolaro & Francesco M. Vitucci & Jessica Manzi & David Munaò & Laura Silvestri & Luca Farina & Priscilla Reale, 2017. "Hydrides as High Capacity Anodes in Lithium Cells: An Italian “Futuro in Ricerca di Base FIRB-2010” Project," Challenges, MDPI, vol. 8(1), pages 1-22, March.
  • Handle: RePEc:gam:jchals:v:8:y:2017:i:1:p:8-:d:93174
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2078-1547/8/1/8/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2078-1547/8/1/8/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniele Meggiolaro & Luca Farina & Laura Silvestri & Stefania Panero & Sergio Brutti & Priscilla Reale, 2016. "Lightweight Borohydrides Electro-Activity in Lithium Cells," Energies, MDPI, vol. 9(4), pages 1-11, March.
    2. J.-M. Tarascon & M. Armand, 2001. "Issues and challenges facing rechargeable lithium batteries," Nature, Nature, vol. 414(6861), pages 359-367, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammadmahdi Ghiji & Vasily Novozhilov & Khalid Moinuddin & Paul Joseph & Ian Burch & Brigitta Suendermann & Grant Gamble, 2020. "A Review of Lithium-Ion Battery Fire Suppression," Energies, MDPI, vol. 13(19), pages 1-30, October.
    2. Zhang, Chao & Wei, Yi-Li & Cao, Peng-Fei & Lin, Meng-Chang, 2018. "Energy storage system: Current studies on batteries and power condition system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3091-3106.
    3. Ziheng Zhang & Maxim Avdeev & Huaican Chen & Wen Yin & Wang Hay Kan & Guang He, 2022. "Lithiated Prussian blue analogues as positive electrode active materials for stable non-aqueous lithium-ion batteries," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Zhi Chang & Huijun Yang & Xingyu Zhu & Ping He & Haoshen Zhou, 2022. "A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Matthew Sadd & Shizhao Xiong & Jacob R. Bowen & Federica Marone & Aleksandar Matic, 2023. "Investigating microstructure evolution of lithium metal during plating and stripping via operando X-ray tomographic microscopy," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Yanjie Yi & Jingshun Zhuang & Chao Liu & Lirong Lei & Shuaiming He & Yi Hou, 2022. "Emerging Lignin-Based Materials in Electrochemical Energy Systems," Energies, MDPI, vol. 15(24), pages 1-22, December.
    7. Jack E. N. Swallow & Michael W. Fraser & Nis-Julian H. Kneusels & Jodie F. Charlton & Christopher G. Sole & Conor M. E. Phelan & Erik Björklund & Peter Bencok & Carlos Escudero & Virginia Pérez-Dieste, 2022. "Revealing solid electrolyte interphase formation through interface-sensitive Operando X-ray absorption spectroscopy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Sewon Kim & Ju-Sik Kim & Lincoln Miara & Yan Wang & Sung-Kyun Jung & Seong Yong Park & Zhen Song & Hyungsub Kim & Michael Badding & JaeMyung Chang & Victor Roev & Gabin Yoon & Ryounghee Kim & Jung-Hwa, 2022. "High-energy and durable lithium metal batteries using garnet-type solid electrolytes with tailored lithium-metal compatibility," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Shenxiang Zhang & Xian Wei & Xue Cao & Meiwen Peng & Min Wang & Lin Jiang & Jian Jin, 2024. "Solar-driven membrane separation for direct lithium extraction from artificial salt-lake brine," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Chao Wang & Ming Liu & Michel Thijs & Frans G. B. Ooms & Swapna Ganapathy & Marnix Wagemaker, 2021. "High dielectric barium titanate porous scaffold for efficient Li metal cycling in anode-free cells," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    11. Ma, Mina & Li, Xiaoyu & Gao, Wei & Sun, Jinhua & Wang, Qingsong & Mi, Chris, 2022. "Multi-fault diagnosis for series-connected lithium-ion battery pack with reconstruction-based contribution based on parallel PCA-KPCA," Applied Energy, Elsevier, vol. 324(C).
    12. Liao, Xiaolin & Sun, Peiyi & Xu, Mengqing & Xing, Lidan & Liao, Youhao & Zhang, Liping & Yu, Le & Fan, Weizhen & Li, Weishan, 2016. "Application of tris(trimethylsilyl)borate to suppress self-discharge of layered nickel cobalt manganese oxide for high energy battery," Applied Energy, Elsevier, vol. 175(C), pages 505-511.
    13. Irina Stenina & Ruslan Shaydullin & Tatiana Kulova & Anna Kuz’mina & Nataliya Tabachkova & Andrey Yaroslavtsev, 2020. "Effect of Carbon Additives on the Electrochemical Performance of Li 4 Ti 5 O 12 /C Anodes," Energies, MDPI, vol. 13(15), pages 1-15, August.
    14. Toyabur Rahman, M. & Sohel Rana, SM & Salauddin, Md. & Maharjan, Pukar & Bhatta, Trilochan & Kim, Hyunsik & Cho, Hyunok & Park, Jae Yeong, 2020. "A highly miniaturized freestanding kinetic-impact-based non-resonant hybridized electromagnetic-triboelectric nanogenerator for human induced vibrations harvesting," Applied Energy, Elsevier, vol. 279(C).
    15. Abdulrahman S. Binfaris & Alexander G. Zestos & Jandro L. Abot, 2023. "Development of Carbon Nanotube Yarn Supercapacitors and Energy Storage for Integrated Structural Health Monitoring," Energies, MDPI, vol. 16(15), pages 1-14, August.
    16. Wang, Zhenpo & Hong, Jichao & Liu, Peng & Zhang, Lei, 2017. "Voltage fault diagnosis and prognosis of battery systems based on entropy and Z-score for electric vehicles," Applied Energy, Elsevier, vol. 196(C), pages 289-302.
    17. Ma, Mina & Wang, Yu & Duan, Qiangling & Wu, Tangqin & Sun, Jinhua & Wang, Qingsong, 2018. "Fault detection of the connection of lithium-ion power batteries in series for electric vehicles based on statistical analysis," Energy, Elsevier, vol. 164(C), pages 745-756.
    18. Lukman Noerochim & Wahyu Caesarendra & Abdulloh Habib & Widyastuti & Suwarno & Yatim Lailun Ni’mah & Achmad Subhan & Bambang Prihandoko & Buyung Kosasih, 2020. "Role of TiO 2 Phase Composition Tuned by LiOH on The Electrochemical Performance of Dual-Phase Li 4 Ti 5 O 12 -TiO 2 Microrod as an Anode for Lithium-Ion Battery," Energies, MDPI, vol. 13(20), pages 1-15, October.
    19. Guo-Rui Zhu & Qin Zhang & Qing-Song Liu & Qi-Yao Bai & Yi-Zhou Quan & You Gao & Gang Wu & Yu-Zhong Wang, 2023. "Non-flammable solvent-free liquid polymer electrolyte for lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Navaratnarajah Kuganathan & Alexander Chroneos, 2020. "Lithium Storage in Nanoporous Complex Oxide 12CaO•7Al 2 O 3 (C12A7)," Energies, MDPI, vol. 13(7), pages 1-10, March.

    More about this item

    Keywords

    hydrides; lithium; batteries;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jchals:v:8:y:2017:i:1:p:8-:d:93174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.