IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i15p5736-d1207975.html
   My bibliography  Save this article

Development of Carbon Nanotube Yarn Supercapacitors and Energy Storage for Integrated Structural Health Monitoring

Author

Listed:
  • Abdulrahman S. Binfaris

    (Department of Mechanical Engineering, The Catholic University of America, Washington, DC 20064, USA)

  • Alexander G. Zestos

    (Department of Chemistry, American University, Washington, DC 20016, USA)

  • Jandro L. Abot

    (Department of Mechanical Engineering, The Catholic University of America, Washington, DC 20064, USA)

Abstract

Developing efficient, sustainable, and high-performance energy storage systems is essential for advancing various industries, including integrated structural health monitoring. Carbon nanotube yarn (CNTY) supercapacitors have the potential to be an excellent solution for this purpose because they offer unique material properties such as high capacitance, electrical conductivity, and energy and power densities. The scope of the study included fabricating supercapacitors using various materials and characterizing them to determine the capacitive properties, energy, and power densities. Experimental studies were conducted to investigate the energy density and power density behavior of CNTYs embedded in various electrochemical-active matrices to monitor the matrices’ power process and the CNTY supercapacitors’ life-cyclic response. The results showed that the CNTY supercapacitors displayed excellent capacitive behavior, with nearly rectangular CV curves across a range of scan rates. The energy density and power density of the supercapacitors fluctuated between a minimum of 3.89 Wh/kg and 8 W/kg while the maximum was between 6.46 Wh/kg and 13.20 W/kg. These CNTY supercapacitors are being tailored to power CNTY sensors integrated into a variety of structures that could monitor damage, strain, temperature, and others.

Suggested Citation

  • Abdulrahman S. Binfaris & Alexander G. Zestos & Jandro L. Abot, 2023. "Development of Carbon Nanotube Yarn Supercapacitors and Energy Storage for Integrated Structural Health Monitoring," Energies, MDPI, vol. 16(15), pages 1-14, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5736-:d:1207975
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/15/5736/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/15/5736/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J.-M. Tarascon & M. Armand, 2001. "Issues and challenges facing rechargeable lithium batteries," Nature, Nature, vol. 414(6861), pages 359-367, November.
    2. M. Salanne & B. Rotenberg & K. Naoi & K. Kaneko & P.-L. Taberna & C. P. Grey & B. Dunn & P. Simon, 2016. "Efficient storage mechanisms for building better supercapacitors," Nature Energy, Nature, vol. 1(6), pages 1-10, June.
    3. Jürgen Janek & Wolfgang G. Zeier, 2016. "A solid future for battery development," Nature Energy, Nature, vol. 1(9), pages 1-4, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sewon Kim & Ju-Sik Kim & Lincoln Miara & Yan Wang & Sung-Kyun Jung & Seong Yong Park & Zhen Song & Hyungsub Kim & Michael Badding & JaeMyung Chang & Victor Roev & Gabin Yoon & Ryounghee Kim & Jung-Hwa, 2022. "High-energy and durable lithium metal batteries using garnet-type solid electrolytes with tailored lithium-metal compatibility," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Xinxin Wang & Jingjing Chen & Dajian Wang & Zhiyong Mao, 2021. "Improving the alkali metal electrode/inorganic solid electrolyte contact via room-temperature ultrasound solid welding," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    3. Pal, Bhupender & Yasin, Amina & Kaur, Rupinder & Tebyetekerwa, Mike & Zabihi, Fatemeh & Yang, Shengyuan & Yang, Chun-Chen & Sofer, Zděnek & Jose, Rajan, 2021. "Understanding electrochemical capacitors with in-situ techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    4. Xiaowei Chi & Ye Zhang & Fang Hao & Steven Kmiec & Hui Dong & Rong Xu & Kejie Zhao & Qing Ai & Tanguy Terlier & Liang Wang & Lihong Zhao & Liqun Guo & Jun Lou & Huolin L. Xin & Steve W. Martin & Yan Y, 2022. "An electrochemically stable homogeneous glassy electrolyte formed at room temperature for all-solid-state sodium batteries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Laura Albero Blanquer & Florencia Marchini & Jan Roman Seitz & Nour Daher & Fanny Bétermier & Jiaqiang Huang & Charlotte Gervillié & Jean-Marie Tarascon, 2022. "Optical sensors for operando stress monitoring in lithium-based batteries containing solid-state or liquid electrolytes," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Mohammadmahdi Ghiji & Vasily Novozhilov & Khalid Moinuddin & Paul Joseph & Ian Burch & Brigitta Suendermann & Grant Gamble, 2020. "A Review of Lithium-Ion Battery Fire Suppression," Energies, MDPI, vol. 13(19), pages 1-30, October.
    7. Zhang, Chao & Wei, Yi-Li & Cao, Peng-Fei & Lin, Meng-Chang, 2018. "Energy storage system: Current studies on batteries and power condition system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3091-3106.
    8. Ziheng Zhang & Maxim Avdeev & Huaican Chen & Wen Yin & Wang Hay Kan & Guang He, 2022. "Lithiated Prussian blue analogues as positive electrode active materials for stable non-aqueous lithium-ion batteries," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    9. Zhi Chang & Huijun Yang & Xingyu Zhu & Ping He & Haoshen Zhou, 2022. "A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Matthew Sadd & Shizhao Xiong & Jacob R. Bowen & Federica Marone & Aleksandar Matic, 2023. "Investigating microstructure evolution of lithium metal during plating and stripping via operando X-ray tomographic microscopy," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Hyeokjin Kwon & Hyun-Ji Choi & Jung-kyu Jang & Jinhong Lee & Jinkwan Jung & Wonjun Lee & Youngil Roh & Jaewon Baek & Dong Jae Shin & Ju-Hyuk Lee & Nam-Soon Choi & Ying Shirley Meng & Hee-Tak Kim, 2023. "Weakly coordinated Li ion in single-ion-conductor-based composite enabling low electrolyte content Li-metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Yanjie Yi & Jingshun Zhuang & Chao Liu & Lirong Lei & Shuaiming He & Yi Hou, 2022. "Emerging Lignin-Based Materials in Electrochemical Energy Systems," Energies, MDPI, vol. 15(24), pages 1-22, December.
    13. Jack E. N. Swallow & Michael W. Fraser & Nis-Julian H. Kneusels & Jodie F. Charlton & Christopher G. Sole & Conor M. E. Phelan & Erik Björklund & Peter Bencok & Carlos Escudero & Virginia Pérez-Dieste, 2022. "Revealing solid electrolyte interphase formation through interface-sensitive Operando X-ray absorption spectroscopy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    14. Sebastian Scheld, Walter & Charlotte Hoff, Linda & Vedder, Christian & Stollenwerk, Jochen & Grüner, Daniel & Rosen, Melanie & Lobe, Sandra & Ihrig, Martin & Seok, Ah–Ram & Finsterbusch, Martin & Uhle, 2023. "Enabling metal substrates for garnet-based composite cathodes by laser sintering," Applied Energy, Elsevier, vol. 345(C).
    15. Shenxiang Zhang & Xian Wei & Xue Cao & Meiwen Peng & Min Wang & Lin Jiang & Jian Jin, 2024. "Solar-driven membrane separation for direct lithium extraction from artificial salt-lake brine," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    16. Chao Wang & Ming Liu & Michel Thijs & Frans G. B. Ooms & Swapna Ganapathy & Marnix Wagemaker, 2021. "High dielectric barium titanate porous scaffold for efficient Li metal cycling in anode-free cells," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    17. Jessica Kersey & Natalie D. Popovich & Amol A. Phadke, 2022. "Rapid battery cost declines accelerate the prospects of all-electric interregional container shipping," Nature Energy, Nature, vol. 7(7), pages 664-674, July.
    18. Ma, Mina & Li, Xiaoyu & Gao, Wei & Sun, Jinhua & Wang, Qingsong & Mi, Chris, 2022. "Multi-fault diagnosis for series-connected lithium-ion battery pack with reconstruction-based contribution based on parallel PCA-KPCA," Applied Energy, Elsevier, vol. 324(C).
    19. Liao, Xiaolin & Sun, Peiyi & Xu, Mengqing & Xing, Lidan & Liao, Youhao & Zhang, Liping & Yu, Le & Fan, Weizhen & Li, Weishan, 2016. "Application of tris(trimethylsilyl)borate to suppress self-discharge of layered nickel cobalt manganese oxide for high energy battery," Applied Energy, Elsevier, vol. 175(C), pages 505-511.
    20. Irina Stenina & Ruslan Shaydullin & Tatiana Kulova & Anna Kuz’mina & Nataliya Tabachkova & Andrey Yaroslavtsev, 2020. "Effect of Carbon Additives on the Electrochemical Performance of Li 4 Ti 5 O 12 /C Anodes," Energies, MDPI, vol. 13(15), pages 1-15, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5736-:d:1207975. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.