IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v149y2021ics1364032121007012.html
   My bibliography  Save this article

Understanding electrochemical capacitors with in-situ techniques

Author

Listed:
  • Pal, Bhupender
  • Yasin, Amina
  • Kaur, Rupinder
  • Tebyetekerwa, Mike
  • Zabihi, Fatemeh
  • Yang, Shengyuan
  • Yang, Chun-Chen
  • Sofer, Zděnek
  • Jose, Rajan

Abstract

Understanding the charge (energy) storage process in electrochemical capacitors (ECs) is crucial for continuous performance enhancement of the billion-dollar charge storage industry. Charge storage mechanism in materials discovery/property manipulation experiments are routinely speculated from cyclic voltammetry (CV), galvanostatic charge – discharge cycling (CDC), and electrochemical impedance spectroscopy (EIS) experiments, but with ambiguities. Herein, with reference to charge storage in ECs, areview and discussion on the usefulness and the experimental set-up of in-situ analytical techniques in literature, viz. in-situ nuclear magnetic resonance spectroscopy, in-situ infrared spectroscopy, in-situ X-ray diffraction, and electrochemical quartz crystal microbalance are detailed. The in-situ characterization techniques probe the structural or weight changes in the material as the device is charged or discharged. This time-resolved structural or weight changes helps to determine the charge-discharge process in the device or electrode in the presence of the electrolyte as a function of applied voltage. The studies so far reveal that in an EC electrode with porous carbon, its pores are occupied with electrolyte ions complementary to the surface charge even in the absence of an applied potential, charging the device lead to counter ion adsorption, co-ion desorption and ion exchange in the electrodes. However, research gaps such as the chemical nature of the accessible and inaccessible storage sites, the volume distribution of charge storage, understanding of the appropriation of the charge adsorption at the required sites are yet to be understood. Further requirements to understand the charge storage mechanisms in different electrodes have also been explored.

Suggested Citation

  • Pal, Bhupender & Yasin, Amina & Kaur, Rupinder & Tebyetekerwa, Mike & Zabihi, Fatemeh & Yang, Shengyuan & Yang, Chun-Chen & Sofer, Zděnek & Jose, Rajan, 2021. "Understanding electrochemical capacitors with in-situ techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
  • Handle: RePEc:eee:rensus:v:149:y:2021:i:c:s1364032121007012
    DOI: 10.1016/j.rser.2021.111418
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121007012
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111418?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. Prehal & C. Koczwara & N. Jäckel & A. Schreiber & M. Burian & H. Amenitsch & M. A. Hartmann & V. Presser & O. Paris, 2017. "Quantification of ion confinement and desolvation in nanoporous carbon supercapacitors with modelling and in situ X-ray scattering," Nature Energy, Nature, vol. 2(3), pages 1-8, March.
    2. J.-M. Tarascon & M. Armand, 2001. "Issues and challenges facing rechargeable lithium batteries," Nature, Nature, vol. 414(6861), pages 359-367, November.
    3. C. Prehal & C. Koczwara & H. Amenitsch & V. Presser & O. Paris, 2018. "Salt concentration and charging velocity determine ion charge storage mechanism in nanoporous supercapacitors," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    4. M. Salanne & B. Rotenberg & K. Naoi & K. Kaneko & P.-L. Taberna & C. P. Grey & B. Dunn & P. Simon, 2016. "Efficient storage mechanisms for building better supercapacitors," Nature Energy, Nature, vol. 1(6), pages 1-10, June.
    5. Alexander C. Forse & John M. Griffin & Céline Merlet & Javier Carretero-Gonzalez & Abdul-Rahman O. Raji & Nicole M. Trease & Clare P. Grey, 2017. "Direct observation of ion dynamics in supercapacitor electrodes using in situ diffusion NMR spectroscopy," Nature Energy, Nature, vol. 2(3), pages 1-7, March.
    6. Andrew J. Ilott & Nicole M. Trease & Clare P. Grey & Alexej Jerschow, 2014. "Multinuclear in situ magnetic resonance imaging of electrochemical double-layer capacitors," Nature Communications, Nature, vol. 5(1), pages 1-6, December.
    7. Krishnan, Syam G. & Arulraj, Arunachalam & Khalid, Mohammad & Reddy, M.V. & Jose, Rajan, 2021. "Energy storage in metal cobaltite electrodes: Opportunities & challenges in magnesium cobalt oxide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    8. C. Merlet & C. Péan & B. Rotenberg & P. A. Madden & B. Daffos & P. -L. Taberna & P. Simon & M. Salanne, 2013. "Highly confined ions store charge more efficiently in supercapacitors," Nature Communications, Nature, vol. 4(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kunwar, Ria & Pal, Bhupender & Izwan Misnon, Izan & Daniyal, Hamdan & Zabihi, Fatemeh & Yang, Shengyuan & Sofer, Zděnek & Yang, Chun-Chen & Jose, Rajan, 2023. "Characterization of electrochemical double layer capacitor electrode using self-discharge measurements and modeling," Applied Energy, Elsevier, vol. 334(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdulrahman S. Binfaris & Alexander G. Zestos & Jandro L. Abot, 2023. "Development of Carbon Nanotube Yarn Supercapacitors and Energy Storage for Integrated Structural Health Monitoring," Energies, MDPI, vol. 16(15), pages 1-14, August.
    2. Kunwar, Ria & Pal, Bhupender & Izwan Misnon, Izan & Daniyal, Hamdan & Zabihi, Fatemeh & Yang, Shengyuan & Sofer, Zděnek & Yang, Chun-Chen & Jose, Rajan, 2023. "Characterization of electrochemical double layer capacitor electrode using self-discharge measurements and modeling," Applied Energy, Elsevier, vol. 334(C).
    3. Zhi Chang & Huijun Yang & Xingyu Zhu & Ping He & Haoshen Zhou, 2022. "A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Chao Wang & Ming Liu & Michel Thijs & Frans G. B. Ooms & Swapna Ganapathy & Marnix Wagemaker, 2021. "High dielectric barium titanate porous scaffold for efficient Li metal cycling in anode-free cells," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    5. Choudhary, Ram Bilash & Ansari, Sarfaraz & Majumder, Mandira, 2021. "Recent advances on redox active composites of metal-organic framework and conducting polymers as pseudocapacitor electrode material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    6. Liao, Xiaolin & Sun, Peiyi & Xu, Mengqing & Xing, Lidan & Liao, Youhao & Zhang, Liping & Yu, Le & Fan, Weizhen & Li, Weishan, 2016. "Application of tris(trimethylsilyl)borate to suppress self-discharge of layered nickel cobalt manganese oxide for high energy battery," Applied Energy, Elsevier, vol. 175(C), pages 505-511.
    7. Ma, Mina & Wang, Yu & Duan, Qiangling & Wu, Tangqin & Sun, Jinhua & Wang, Qingsong, 2018. "Fault detection of the connection of lithium-ion power batteries in series for electric vehicles based on statistical analysis," Energy, Elsevier, vol. 164(C), pages 745-756.
    8. Min Xu & Jinjun Qu & Mai Li, 2022. "National Policies, Recent Research Hotspots, and Application of Sustainable Energy: Case of China, USA, and European Countries," Sustainability, MDPI, vol. 14(16), pages 1-30, August.
    9. Guo-Rui Zhu & Qin Zhang & Qing-Song Liu & Qi-Yao Bai & Yi-Zhou Quan & You Gao & Gang Wu & Yu-Zhong Wang, 2023. "Non-flammable solvent-free liquid polymer electrolyte for lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Navaratnarajah Kuganathan & Alexander Chroneos, 2020. "Lithium Storage in Nanoporous Complex Oxide 12CaO•7Al 2 O 3 (C12A7)," Energies, MDPI, vol. 13(7), pages 1-10, March.
    11. Zhi Chang & Huijun Yang & Anqiang Pan & Ping He & Haoshen Zhou, 2022. "An improved 9 micron thick separator for a 350 Wh/kg lithium metal rechargeable pouch cell," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Zhu, Xiaoqing & Wang, Zhenpo & Wang, Yituo & Wang, Hsin & Wang, Cong & Tong, Lei & Yi, Mi, 2019. "Overcharge investigation of large format lithium-ion pouch cells with Li(Ni0.6Co0.2Mn0.2)O2 cathode for electric vehicles: Thermal runaway features and safety management method," Energy, Elsevier, vol. 169(C), pages 868-880.
    13. Wang, Wei & Wu, Yufeng, 2017. "An overview of recycling and treatment of spent LiFePO4 batteries in China," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 233-243.
    14. Xiaozhe Zhang & Pan Xu & Jianing Duan & Xiaodong Lin & Juanjuan Sun & Wenjie Shi & Hewei Xu & Wenjie Dou & Qingyi Zheng & Ruming Yuan & Jiande Wang & Yan Zhang & Shanshan Yu & Zehan Chen & Mingsen Zhe, 2024. "A dicarbonate solvent electrolyte for high performance 5 V-Class Lithium-based batteries," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    15. Pinelopi Angelopoulou & Spyros Kassavetis & Joan Papavasiliou & Dimitris Karfaridis & Grzegorz Słowik & Panos Patsalas & George Avgouropoulos, 2021. "Enhanced Performance of LiAl 0.1 Mn 1.9 O 4 Cathode for Li-Ion Battery via TiN Coating," Energies, MDPI, vol. 14(4), pages 1-14, February.
    16. Xinxin Wang & Jingjing Chen & Dajian Wang & Zhiyong Mao, 2021. "Improving the alkali metal electrode/inorganic solid electrolyte contact via room-temperature ultrasound solid welding," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    17. Dong Hou & Zhengrui Xu & Zhijie Yang & Chunguang Kuai & Zhijia Du & Cheng-Jun Sun & Yang Ren & Jue Liu & Xianghui Xiao & Feng Lin, 2022. "Effect of the grain arrangements on the thermal stability of polycrystalline nickel-rich lithium-based battery cathodes," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. He, Lihua & Xu, Shengming & Zhao, Zhongwei, 2017. "Suppressing the formation of Fe2P: Thermodynamic study on the phase diagram and phase transformation for LiFePO4 synthesis," Energy, Elsevier, vol. 134(C), pages 962-967.
    19. Qingyuan Li & De Ning & Deniz Wong & Ke An & Yuxin Tang & Dong Zhou & Götz Schuck & Zhenhua Chen & Nian Zhang & Xiangfeng Liu, 2022. "Improving the oxygen redox reversibility of Li-rich battery cathode materials via Coulombic repulsive interactions strategy," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    20. Rajamani, Arunkumar & Panneerselvam, Thamayanthi & Murugan, Ramaswamy & Ramaswamy, Arun Prasath, 2023. "Electrospun derived polymer-garnet composite quasi solid state electrolyte with low interface resistance for lithium metal batteries," Energy, Elsevier, vol. 263(PE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:149:y:2021:i:c:s1364032121007012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.