IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i20p5251-d425642.html
   My bibliography  Save this article

Role of TiO 2 Phase Composition Tuned by LiOH on The Electrochemical Performance of Dual-Phase Li 4 Ti 5 O 12 -TiO 2 Microrod as an Anode for Lithium-Ion Battery

Author

Listed:
  • Lukman Noerochim

    (Department of Materials and Metallurgical Engineering, Sepuluh Nopember Institute of Technology, Surabaya 60111, Indonesia)

  • Wahyu Caesarendra

    (Faculty of Integrated Technologies, Universiti Brunei Darussalam, Jalan Tungku Link BE1410, Brunei Darussalam)

  • Abdulloh Habib

    (Department of Materials and Metallurgical Engineering, Sepuluh Nopember Institute of Technology, Surabaya 60111, Indonesia)

  • Widyastuti

    (Department of Materials and Metallurgical Engineering, Sepuluh Nopember Institute of Technology, Surabaya 60111, Indonesia)

  • Suwarno

    (Department of Mechanical Engineering, Sepuluh Nopember Institute of Technology, Surabaya 60111, Indonesia)

  • Yatim Lailun Ni’mah

    (Department of Chemistry, Sepuluh Nopember Institute of Technology, Surabaya 60111, Indonesia)

  • Achmad Subhan

    (Research Center of Physics, Indonesian Institute of Science, Serpong 15314, Indonesia)

  • Bambang Prihandoko

    (Research Center of Physics, Indonesian Institute of Science, Serpong 15314, Indonesia)

  • Buyung Kosasih

    (School of Mechanical, Materials and Mechatronics Engineering, University of Wollongong, Wollongong 2522, Australia)

Abstract

In this study, a dual-phase Li 4 Ti 5 O 12 -TiO 2 microrod was successfully prepared using a modified hydrothermal method and calcination process. The stoichiometry of LiOH as precursor was varied at mol ratio of 0.9, 1.1, and 1.3, to obtain the appropriate phase composition between TiO 2 and Li 4 Ti 5 O 12 . Results show that TiO 2 content has an important role in increasing the specific capacity of electrodes. The refinement of X-ray diffraction patterns by Rietveld analysis confirm that increasing the LiOH stoichiometry suppresses the TiO 2 phase. In the scanning electron microscopy images, the microrod morphology was formed after calcination with diameter sizes ranging from 142.34 to 260.62 nm and microrod lengths ranging from 5.03–7.37 μm. The 0.9 LiOH sample shows a prominent electrochemical performance with the largest specific capacity of 162.72 mAh/g and 98.75% retention capacity achieved at a rate capability test of 1 C. This finding can be attributed to the appropriate amount of TiO 2 that induced the smaller crystallite size, and lower charge transfer resistance, enhancing the lithium-ion insertion/extraction process and faster diffusion kinetics.

Suggested Citation

  • Lukman Noerochim & Wahyu Caesarendra & Abdulloh Habib & Widyastuti & Suwarno & Yatim Lailun Ni’mah & Achmad Subhan & Bambang Prihandoko & Buyung Kosasih, 2020. "Role of TiO 2 Phase Composition Tuned by LiOH on The Electrochemical Performance of Dual-Phase Li 4 Ti 5 O 12 -TiO 2 Microrod as an Anode for Lithium-Ion Battery," Energies, MDPI, vol. 13(20), pages 1-15, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5251-:d:425642
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/20/5251/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/20/5251/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J.-M. Tarascon & M. Armand, 2001. "Issues and challenges facing rechargeable lithium batteries," Nature, Nature, vol. 414(6861), pages 359-367, November.
    2. F. Croce & G. B. Appetecchi & L. Persi & B. Scrosati, 1998. "Nanocomposite polymer electrolytes for lithium batteries," Nature, Nature, vol. 394(6692), pages 456-458, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Rahul & Polu, Anji Reddy & Bhattacharya, B. & Rhee, Hee-Woo & Varlikli, Canan & Singh, Pramod K., 2016. "Perspectives for solid biopolymer electrolytes in dye sensitized solar cell and battery application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1098-1117.
    2. Zhi Chang & Huijun Yang & Xingyu Zhu & Ping He & Haoshen Zhou, 2022. "A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Chao Wang & Ming Liu & Michel Thijs & Frans G. B. Ooms & Swapna Ganapathy & Marnix Wagemaker, 2021. "High dielectric barium titanate porous scaffold for efficient Li metal cycling in anode-free cells," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    4. Liao, Xiaolin & Sun, Peiyi & Xu, Mengqing & Xing, Lidan & Liao, Youhao & Zhang, Liping & Yu, Le & Fan, Weizhen & Li, Weishan, 2016. "Application of tris(trimethylsilyl)borate to suppress self-discharge of layered nickel cobalt manganese oxide for high energy battery," Applied Energy, Elsevier, vol. 175(C), pages 505-511.
    5. Ma, Mina & Wang, Yu & Duan, Qiangling & Wu, Tangqin & Sun, Jinhua & Wang, Qingsong, 2018. "Fault detection of the connection of lithium-ion power batteries in series for electric vehicles based on statistical analysis," Energy, Elsevier, vol. 164(C), pages 745-756.
    6. Jun Young Kim & Dae Young Lim, 2010. "Surface-Modified Membrane as A Separator for Lithium-Ion Polymer Battery," Energies, MDPI, vol. 3(4), pages 1-20, April.
    7. Guo-Rui Zhu & Qin Zhang & Qing-Song Liu & Qi-Yao Bai & Yi-Zhou Quan & You Gao & Gang Wu & Yu-Zhong Wang, 2023. "Non-flammable solvent-free liquid polymer electrolyte for lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Navaratnarajah Kuganathan & Alexander Chroneos, 2020. "Lithium Storage in Nanoporous Complex Oxide 12CaO•7Al 2 O 3 (C12A7)," Energies, MDPI, vol. 13(7), pages 1-10, March.
    9. Zhi Chang & Huijun Yang & Anqiang Pan & Ping He & Haoshen Zhou, 2022. "An improved 9 micron thick separator for a 350 Wh/kg lithium metal rechargeable pouch cell," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Zhu, Xiaoqing & Wang, Zhenpo & Wang, Yituo & Wang, Hsin & Wang, Cong & Tong, Lei & Yi, Mi, 2019. "Overcharge investigation of large format lithium-ion pouch cells with Li(Ni0.6Co0.2Mn0.2)O2 cathode for electric vehicles: Thermal runaway features and safety management method," Energy, Elsevier, vol. 169(C), pages 868-880.
    11. Wang, Wei & Wu, Yufeng, 2017. "An overview of recycling and treatment of spent LiFePO4 batteries in China," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 233-243.
    12. Xiaozhe Zhang & Pan Xu & Jianing Duan & Xiaodong Lin & Juanjuan Sun & Wenjie Shi & Hewei Xu & Wenjie Dou & Qingyi Zheng & Ruming Yuan & Jiande Wang & Yan Zhang & Shanshan Yu & Zehan Chen & Mingsen Zhe, 2024. "A dicarbonate solvent electrolyte for high performance 5 V-Class Lithium-based batteries," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    13. Pinelopi Angelopoulou & Spyros Kassavetis & Joan Papavasiliou & Dimitris Karfaridis & Grzegorz Słowik & Panos Patsalas & George Avgouropoulos, 2021. "Enhanced Performance of LiAl 0.1 Mn 1.9 O 4 Cathode for Li-Ion Battery via TiN Coating," Energies, MDPI, vol. 14(4), pages 1-14, February.
    14. Xinxin Wang & Jingjing Chen & Dajian Wang & Zhiyong Mao, 2021. "Improving the alkali metal electrode/inorganic solid electrolyte contact via room-temperature ultrasound solid welding," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    15. Dong Hou & Zhengrui Xu & Zhijie Yang & Chunguang Kuai & Zhijia Du & Cheng-Jun Sun & Yang Ren & Jue Liu & Xianghui Xiao & Feng Lin, 2022. "Effect of the grain arrangements on the thermal stability of polycrystalline nickel-rich lithium-based battery cathodes," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. He, Lihua & Xu, Shengming & Zhao, Zhongwei, 2017. "Suppressing the formation of Fe2P: Thermodynamic study on the phase diagram and phase transformation for LiFePO4 synthesis," Energy, Elsevier, vol. 134(C), pages 962-967.
    17. Qingyuan Li & De Ning & Deniz Wong & Ke An & Yuxin Tang & Dong Zhou & Götz Schuck & Zhenhua Chen & Nian Zhang & Xiangfeng Liu, 2022. "Improving the oxygen redox reversibility of Li-rich battery cathode materials via Coulombic repulsive interactions strategy," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    18. Rajamani, Arunkumar & Panneerselvam, Thamayanthi & Murugan, Ramaswamy & Ramaswamy, Arun Prasath, 2023. "Electrospun derived polymer-garnet composite quasi solid state electrolyte with low interface resistance for lithium metal batteries," Energy, Elsevier, vol. 263(PE).
    19. Shriram S. Rangarajan & Suvetha Poyyamani Sunddararaj & AVV Sudhakar & Chandan Kumar Shiva & Umashankar Subramaniam & E. Randolph Collins & Tomonobu Senjyu, 2022. "Lithium-Ion Batteries—The Crux of Electric Vehicles with Opportunities and Challenges," Clean Technol., MDPI, vol. 4(4), pages 1-23, September.
    20. Philip, Abin & Ruban Kumar, A., 2023. "Recent advancements and developments employing 2D-materials in enhancing the performance of electrochemical supercapacitors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5251-:d:425642. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.