IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v8y2018i2p27-d131915.html
   My bibliography  Save this article

Phosphorus Transport in Arabidopsis and Wheat: Emerging Strategies to Improve P Pool in Seeds

Author

Listed:
  • Mushtak Kisko

    (BPMP, Univ Montpellier, CNRS, INRA, SupAgro, 34060 Montpellier, France)

  • Vishnu Shukla

    (Department of Biotechnology, National Agri-Food Biotechnology Institute, Sector 81, S.A.S. Nagar (Mohali), Punjab 140306, India)

  • Mandeep Kaur

    (Department of Biotechnology, National Agri-Food Biotechnology Institute, Sector 81, S.A.S. Nagar (Mohali), Punjab 140306, India)

  • Nadia Bouain

    (BPMP, Univ Montpellier, CNRS, INRA, SupAgro, 34060 Montpellier, France)

  • Nanthana Chaiwong

    (BPMP, Univ Montpellier, CNRS, INRA, SupAgro, 34060 Montpellier, France)

  • Benoit Lacombe

    (BPMP, Univ Montpellier, CNRS, INRA, SupAgro, 34060 Montpellier, France)

  • Ajay Kumar Pandey

    (Department of Biotechnology, National Agri-Food Biotechnology Institute, Sector 81, S.A.S. Nagar (Mohali), Punjab 140306, India)

  • Hatem Rouached

    (BPMP, Univ Montpellier, CNRS, INRA, SupAgro, 34060 Montpellier, France
    Present Address: Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.)

Abstract

Phosphorus (P) is an essential macronutrient for plants to complete their life cycle. P taken up from the soil by the roots is transported to the rest of the plant and ultimately stored in seeds. This stored P is used during germination to sustain the nutritional demands of the growing seedling in the absence of a developed root system. Nevertheless, P deficiency, an increasing global issue, greatly decreases the vigour of afflicted seeds. To combat P deficiency, current crop production methods rely on heavy P fertilizer application, an unsustainable practice in light of a speculated decrease in worldwide P stocks. Therefore, the overall goal in optimizing P usage for agricultural purposes is both to decrease our dependency on P fertilizers and enhance the P-use efficiency in plants. Achieving this goal requires a robust understanding of how plants regulate inorganic phosphate (Pi) transport, during vegetative growth as well as the reproductive stages of development. In this short review, we present the current knowledge on Pi transport in the model plant Arabidopsis thaliana and apply the information towards the economically important cereal crop wheat. We highlight the importance of developing our knowledge on the regulation of these plants’ P transport systems and P accumulation in seeds due to its involvement in maintaining their vigour and nutritional quality. We additionally discuss further discoveries in the subjects this review discusses substantiate this importance in their practical applications for practical food security and geopolitical applications.

Suggested Citation

  • Mushtak Kisko & Vishnu Shukla & Mandeep Kaur & Nadia Bouain & Nanthana Chaiwong & Benoit Lacombe & Ajay Kumar Pandey & Hatem Rouached, 2018. "Phosphorus Transport in Arabidopsis and Wheat: Emerging Strategies to Improve P Pool in Seeds," Agriculture, MDPI, vol. 8(2), pages 1-12, February.
  • Handle: RePEc:gam:jagris:v:8:y:2018:i:2:p:27-:d:131915
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/8/2/27/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/8/2/27/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Deepak K. Ray & Navin Ramankutty & Nathaniel D. Mueller & Paul C. West & Jonathan A. Foley, 2012. "Recent patterns of crop yield growth and stagnation," Nature Communications, Nature, vol. 3(1), pages 1-7, January.
    2. Tzu-Yin Liu & Teng-Kuei Huang & Shu-Yi Yang & Yu-Ting Hong & Sheng-Min Huang & Fu-Nien Wang & Su-Fen Chiang & Shang-Yueh Tsai & Wen-Chien Lu & Tzyy-Jen Chiou, 2016. "Identification of plant vacuolar transporters mediating phosphate storage," Nature Communications, Nature, vol. 7(1), pages 1-11, September.
    3. Naoki Yamaji & Yuma Takemoto & Takaaki Miyaji & Namiki Mitani-Ueno & Kaoru T. Yoshida & Jian Feng Ma, 2017. "Erratum: Reducing phosphorus accumulation in rice grains with an impaired transporter in the node," Nature, Nature, vol. 543(7643), pages 136-136, March.
    4. Naoki Yamaji & Yuma Takemoto & Takaaki Miyaji & Namiki Mitani-Ueno & Kaoru T. Yoshida & Jian Feng Ma, 2017. "Reducing phosphorus accumulation in rice grains with an impaired transporter in the node," Nature, Nature, vol. 541(7635), pages 92-95, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Urs Feller & Stanislav Kopriva & Valya Vassileva, 2018. "Plant Nutrient Dynamics in Stressful Environments: Needs Interfere with Burdens," Agriculture, MDPI, vol. 8(7), pages 1-6, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Chunye & Wang, Rui & Wang, Wene & Hu, Xiaotao & Cheng, Yong & Liu, Fulai, 2021. "Effect of fertilizer solution concentrations on filter clogging in drip fertigation systems," Agricultural Water Management, Elsevier, vol. 250(C).
    2. Namiki Mitani-Ueno & Naoki Yamaji & Sheng Huang & Yuma Yoshioka & Takaaki Miyaji & Jian Feng Ma, 2023. "A silicon transporter gene required for healthy growth of rice on land," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Zichao Tang & Yanxue Jiang & Chenchen Wang & Rui Zhang & Jinsong Guo & Fang Fang, 2023. "New Insight into Phosphorus Release of Rhizosphere Soil in the Water Level Fluctuation Zone," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
    4. Michael Oster & Henry Reyer & Elizabeth Ball & Dario Fornara & John McKillen & Kristina Ulrich Sørensen & Hanne Damgaard Poulsen & Kim Andersson & Daniel Ddiba & Arno Rosemarin & Linda Arata & Paolo S, 2018. "Bridging Gaps in the Agricultural Phosphorus Cycle from an Animal Husbandry Perspective—The Case of Pigs and Poultry," Sustainability, MDPI, vol. 10(6), pages 1-14, June.
    5. Cao, Juan & Zhang, Zhao & Tao, Fulu & Chen, Yi & Luo, Xiangzhong & Xie, Jun, 2023. "Forecasting global crop yields based on El Nino Southern Oscillation early signals," Agricultural Systems, Elsevier, vol. 205(C).
    6. Meike Weltin & Silke Hüttel, 2023. "Sustainable Intensification Farming as an Enabler for Farm Eco-Efficiency?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(1), pages 315-342, January.
    7. Manogna R. L. & Aswini Kumar Mishra, 2022. "Agricultural production efficiency of Indian states: Evidence from data envelopment analysis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4244-4255, October.
    8. Rada, Nicholas E., 2013. "Agricultural Growth in India: Examining the Post-Green Revolution Transition," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149547, Agricultural and Applied Economics Association.
    9. Terrance Hurley & Jawoo Koo & Kindie Tesfaye, 2018. "Weather risk: how does it change the yield benefits of nitrogen fertilizer and improved maize varieties in sub‐Saharan Africa?," Agricultural Economics, International Association of Agricultural Economists, vol. 49(6), pages 711-723, November.
    10. J. Vernon Henderson & Sebastian Kriticos, 2018. "The Development of the African System of Cities," Annual Review of Economics, Annual Reviews, vol. 10(1), pages 287-314, August.
    11. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    12. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    13. Ning Luo & Qingfeng Meng & Puyu Feng & Ziren Qu & Yonghong Yu & De Li Liu & Christoph Müller & Pu Wang, 2023. "China can be self-sufficient in maize production by 2030 with optimal crop management," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Zhang, Bangbang & Li, Xian & Chen, Haibin & Niu, Wenhao & Kong, Xiangbin & Yu, Qiang & Zhao, Minjuan & Xia, Xianli, 2022. "Identifying opportunities to close yield gaps in China by use of certificated cultivars to estimate potential productivity," Land Use Policy, Elsevier, vol. 117(C).
    15. Coronese, Matteo & Occelli, Martina & Lamperti, Francesco & Roventini, Andrea, 2023. "AgriLOVE: Agriculture, land-use and technical change in an evolutionary, agent-based model," Ecological Economics, Elsevier, vol. 208(C).
    16. Haidong Zhao & Lina Zhang & M. B. Kirkham & Stephen M. Welch & John W. Nielsen-Gammon & Guihua Bai & Jiebo Luo & Daniel A. Andresen & Charles W. Rice & Nenghan Wan & Romulo P. Lollato & Dianfeng Zheng, 2022. "U.S. winter wheat yield loss attributed to compound hot-dry-windy events," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Kamini Yadav & Hatim M. E. Geli, 2021. "Prediction of Crop Yield for New Mexico Based on Climate and Remote Sensing Data for the 1920–2019 Period," Land, MDPI, vol. 10(12), pages 1-27, December.
    18. Michelson, Hope & Fairbairn, Anna & Ellison, Brenna & Maertens, Annemie & Manyong, Victor, 2021. "Misperceived quality: Fertilizer in Tanzania," Journal of Development Economics, Elsevier, vol. 148(C).
    19. Margaux Lapierre & Alexandre Sauquet & Julie Subervie, 2019. "Providing technical assistance to peer networks to reduce pesticide use in Europe: Evidence from the French Ecophyto plan," Working Papers hal-02190979, HAL.
    20. Sangam Shrestha & Proloy Deb & Thi Bui, 2016. "Adaptation strategies for rice cultivation under climate change in Central Vietnam," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(1), pages 15-37, January.

    More about this item

    Keywords

    phosphate; seeds; Arabidopsis; wheat;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:8:y:2018:i:2:p:27-:d:131915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.