IDEAS home Printed from https://ideas.repec.org/a/eee/wdevel/v128y2020ics0305750x19304851.html
   My bibliography  Save this article

Power tariffs for groundwater irrigation in India: A comparative analysis of the environmental, equity, and economic tradeoffs

Author

Listed:
  • Sidhu, Balsher Singh
  • Kandlikar, Milind
  • Ramankutty, Navin

Abstract

Groundwater irrigation using electric pumps plays a key role in India’s agricultural water supply. Power utilities across different states use two common tariff modes to charge groundwater consumers: flat tariffs, where payments are fixed according to a pump’s power rating, and metered tariffs based on units of power actually consumed. In this review, we use empirical evidence from past studies across multiple jurisdictions in India to compare the two tariff structures in terms of three key features: administrative burden on utilities; equity of groundwater access between high-income and low-income farmers; and influence on farmers’ pumping behavior. Our analysis shows that flat tariffs have low administrative costs and more equitable distributional outcomes, but provide no incentive to farmers for water conservation. Conversely, metered tariffs have the potential to encourage judicious consumption, but are expensive to manage and disadvantageous to low-income farmers who often buy water from wealthier groundwater well owners. Flawed tariff policies, in conjunction with large subsidies for agricultural power, have caused rapid groundwater depletion in many regions as well as massive financial losses to power utilities and governments – both state and central. Since there is considerable heterogeneity in agricultural practices and groundwater availability across India, we propose location-specific strategies for rationalizing agricultural power tariffs in different regions. While the groundwater-abundant eastern regions can benefit from a hybrid flat-cum-metered tariff that encourages farmer-to-farmer water sales, western states facing unsustainable groundwater exploitation should develop tariff policies that ration power, prioritize its supply during the most critical seasons, and reward farmers who reduce their groundwater consumption. Not only will such tariff policies help conserve groundwater, but also augment government financial resources for social welfare programs such as education, health, energy access etc. Thus, improved power policies can provide substantial assistance in India’s progress towards multiple UN Sustainable Development Goals.

Suggested Citation

  • Sidhu, Balsher Singh & Kandlikar, Milind & Ramankutty, Navin, 2020. "Power tariffs for groundwater irrigation in India: A comparative analysis of the environmental, equity, and economic tradeoffs," World Development, Elsevier, vol. 128(C).
  • Handle: RePEc:eee:wdevel:v:128:y:2020:i:c:s0305750x19304851
    DOI: 10.1016/j.worlddev.2019.104836
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305750X19304851
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.worlddev.2019.104836?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shah, Tushaar & Scott, C. & Kishore, A. & Sharma, A., 2003. "Energy-irrigation nexus in South Asia: Improving groundwater conservation and power sector viability," IWMI Research Reports H033885, International Water Management Institute.
    2. Shah, T., 2001. "Wells and welfare in the Ganga Basin: Public policy and private initiative in Eastern Uttar Pradesh, India," IWMI Research Reports H028784, International Water Management Institute.
    3. Jain, Varinder, 2006. "Political Economy of Electricity Subsidy: Evidence from Punjab," MPRA Paper 240, University Library of Munich, Germany.
    4. Shah, Tushaar & Verma, Shilp, 2008. "Real-time co-management of electricity and groundwater: an assessment of Gujarat’s pioneering Jyotirgram Scheme," Conference Papers h041811, International Water Management Institute.
    5. M. Dinesh Kumar & Christopher A. Scott & O.P. Singh, 2013. "Can India raise agricultural productivity while reducing groundwater and energy use?," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 29(4), pages 557-573, December.
    6. Ujjayant Chakravorty & Manzoor H. Dar & Kyle Emerick, 2019. "Inefficient water pricing and incentives for conservation," CESifo Working Paper Series 7560, CESifo.
    7. Birner, Regina & Gupta, Surupa & Sharma, Neeru, 2011. "The political economy of agricultural policy reform in India: Fertilizers and electricity for irrigation," Research reports reginabirner, International Food Policy Research Institute (IFPRI).
    8. Shah, Tushaar & Burke, J. & Villholth, K. & Angelica, M. & Custodio, E. & Daibes, F. & Hoogesteger, J. & Giordano, Mark & Girman, J. & van der Gun, J. & Kendy, E. & Kijne, J. & Llamas, R. & Masiyandim, 2007. "Groundwater: a global assessment of scale and significance," IWMI Books, Reports H040203, International Water Management Institute.
    9. Manjunatha, A.V. & Speelman, Stijn & Van Huylenbroeck, Guido & Chandrakanth, Mysore G., 2009. "Impact of groundwater markets in peninsular India on water use efficiency: A Data Envelopment Analysis approach," 2009 Conference, August 16-22, 2009, Beijing, China 50624, International Association of Agricultural Economists.
    10. Shah, Tushaar & Verma, Shilp, 2008. "Real-time co-management of electricity and groundwater: an assessment of Gujarat’s pioneering Jyotirgram Scheme," IWMI Conference Proceedings 235174, International Water Management Institute.
    11. Siwan Anderson, 2011. "Caste as an Impediment to Trade," American Economic Journal: Applied Economics, American Economic Association, vol. 3(1), pages 239-263, January.
    12. Shah, Tushaar & Bhatt, Sonal & Shah, R.K. & Talati, Jayesh, 2008. "Groundwater governance through electricity supply management: Assessing an innovative intervention in Gujarat, western India," Agricultural Water Management, Elsevier, vol. 95(11), pages 1233-1242, November.
    13. Singh, O.P. & Singh, Rakesh & Singh, Manish Kumar, 2014. "Impact of Farm Sector Electricity Subsidy on Water Use Efficiency and Water Productivity in India," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 69(3), pages 1-10.
    14. Aditi Mukherji & Arijit Das, 2014. "The political economy of metering agricultural tube wells in West Bengal, India," Water International, Taylor & Francis Journals, vol. 39(5), pages 671-685, September.
    15. Shah, Tushaar, 2001. "Wells and welfare in the Ganga Basin: Public policy and private initiative in Eastern Uttar Pradesh, India," IWMI Research Reports 44570, International Water Management Institute.
    16. Mukherji, A. & Das, B. & Majumdar, N. & Nayak, N.C. & Sethi, R.R. & Sharma, B.R., 2009. "Metering of agricultural power supply in West Bengal, India: Who gains and who loses?," Energy Policy, Elsevier, vol. 37(12), pages 5530-5539, December.
    17. Mukherjee, Shilpi & Dhingra, Tarun & Sengupta, Anirban, 2017. "Status of Electricity Act, 2003: A systematic review of literature," Energy Policy, Elsevier, vol. 102(C), pages 237-248.
    18. Meinzen-Dick, Ruth & Janssen, Marco A. & Kandikuppa, Sandeep & Chaturvedi, Rahul & Rao, Kaushalendra & Theis, Sophie, 2018. "Playing games to save water: Collective action games for groundwater management in Andhra Pradesh, India," World Development, Elsevier, vol. 107(C), pages 40-53.
    19. Molden, David, 2007. "Water for food, water for life: a comprehensive assessment of water management in agriculture," IWMI Books, Reports H040193, International Water Management Institute.
    20. Mani Khurana & Sudeshna Ghosh Banerjee, 2015. "Beyond Crisis : The Financial Performance of India's Power Sector," World Bank Publications - Books, The World Bank Group, number 20527, December.
    21. Ram Fishman & Upmanu Lall & Vijay Modi & Nikunj Parekh, 2016. "Can Electricity Pricing Save India’s Groundwater? Field Evidence from a Novel Policy Mechanism in Gujarat," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(4), pages 819-855.
    22. Palit, Debajit & Bandyopadhyay, Kaushik Ranjan, 2017. "Rural electricity access in India in retrospect: A critical rumination," Energy Policy, Elsevier, vol. 109(C), pages 109-120.
    23. Mukherji, Aditi, 2007. "The energy-irrigation nexus and its impact on groundwater markets in eastern Indo-Gangetic basin: Evidence from West Bengal, India," Energy Policy, Elsevier, vol. 35(12), pages 6413-6430, December.
    24. Shah, Tushaar & Scott, Christopher A. & Kishore, Avinash & Sharma, Abhishek, 2004. "Energy-irrigation nexus in South Asia: Improving groundwater conservation and power sector viability," IWMI Research Reports 44557, International Water Management Institute.
    25. Stuti Rawat & Aditi Mukherji, 2014. "Poor state of irrigation statistics in India: the case of pumps, wells and tubewells," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 30(2), pages 262-281, June.
    26. Matthew Rodell & Isabella Velicogna & James S. Famiglietti, 2009. "Satellite-based estimates of groundwater depletion in India," Nature, Nature, vol. 460(7258), pages 999-1002, August.
    27. Anindita Sarkar, 2012. "Sustaining livelihoods in face of groundwater depletion: a case study of Punjab, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 14(2), pages 183-195, April.
    28. Zekri, Slim & Madani, Kaveh & Bazargan-Lari, Mohammad Reza & Kotagama, Hemesiri & Kalbus, Edda, 2017. "Feasibility of adopting smart water meters in aquifer management: An integrated hydro-economic analysis," Agricultural Water Management, Elsevier, vol. 181(C), pages 85-93.
    29. Molden, David, 2007. "Water for food, water for life: a comprehensive assessment of water management in agriculture: summary," IWMI Books, Reports H039769, International Water Management Institute.
    30. Chatterjee, Elizabeth, 2018. "The politics of electricity reform: Evidence from West Bengal, India," World Development, Elsevier, vol. 104(C), pages 128-139.
    31. Singh, Karam, 2012. "Electricity Subsidy in Punjab Agriculture: Extent and Impact," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 67(4), pages 1-16.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Disha Gupta, 2023. "Free power, irrigation, and groundwater depletion: Impact of farm electricity policy of Punjab, India," Agricultural Economics, International Association of Agricultural Economists, vol. 54(4), pages 515-541, July.
    2. Mitra, Archisman & Balasubramanya, Soumya & Bouwer, Roy, 2021. "Can electricity rebates modify groundwater pumping behaviours? Evidence from a pilot study in Punjab, India," 2021 Annual Meeting, August 1-3, Austin, Texas 313871, Agricultural and Applied Economics Association.
    3. Kishore, Avinash & Singh, Vartika, 2021. "Seeds, Water, and Markets to Increase Wheat Productivity in Bihar, India," 2021 Conference, August 17-31, 2021, Virtual 315022, International Association of Agricultural Economists.
    4. Urfels, Anton & Mausch, Kai & Harris, Dave & McDonald, Andrew J. & Kishore, Avinash & Balwinder-Singh, & van Halsema, Gerardo & Struik, Paul C. & Craufurd, Peter & Foster, Timothy & Singh, Vartika & K, 2023. "Farm size limits agriculture's poverty reduction potential in Eastern India even with irrigation-led intensification," Agricultural Systems, Elsevier, vol. 207(C).
    5. Kishore, Prabhat & Singh, Dharam R. & Srivastava, Shivendra & Kumar, Arun & Prakash, 2021. "Food-Groundwater-Energy nexus in Indian agriculture: Empirical evidence from Uttar Pradesh, India," 2021 ASAE 10th International Conference (Virtual), January 11-13, Beijing, China 329408, Asian Society of Agricultural Economists (ASAE).
    6. Soumya Balasubramanya & Nicholas Brozović & Ram Fishman & Sharachchandra Lele & Jinxia Wang, 2022. "Managing irrigation under increasing water scarcity," Agricultural Economics, International Association of Agricultural Economists, vol. 53(6), pages 976-984, November.
    7. Aditi Mukherji, 2022. "Sustainable Groundwater Management in India Needs a Water‐Energy‐Food Nexus Approach," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 44(1), pages 394-410, March.
    8. Jalilov, Shokhrukh-Mirzo & Rahman, Wakilur & Palash, Salauddin & Jahan, Hasneen & Mainuddin, Mohammed & Ward, Frank A., 2022. "Exploring strategies to control the cost of food security: Evidence from Bangladesh," Agricultural Systems, Elsevier, vol. 196(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Dinesh Kumar, 2016. "Distressed Elephants: Policy Initiatives for Sustainable Groundwater Management in India," IIM Kozhikode Society & Management Review, , vol. 5(1), pages 51-62, January.
    2. Aditi Mukherji, 2022. "Sustainable Groundwater Management in India Needs a Water‐Energy‐Food Nexus Approach," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 44(1), pages 394-410, March.
    3. Glendenning, C.J. & van Ogtrop, F.F. & Mishra, A.K. & Vervoort, R.W., 2012. "Balancing watershed and local scale impacts of rain water harvesting in India—A review," Agricultural Water Management, Elsevier, vol. 107(C), pages 1-13.
    4. de Fraiture, Charlotte & Giordano, Meredith, 2014. "Small private irrigation: A thriving but overlooked sector," Agricultural Water Management, Elsevier, vol. 131(C), pages 167-174.
    5. CGIAR Research Program on Water, Land and Ecosystems, 2015. "Groundwater and ecosystem services: a framework for managing smallholder groundwater-dependent agrarian socio-ecologies - applying an ecosystem services and resilience approach," IWMI Books, International Water Management Institute, number 208414.
    6. Disha Gupta, 2023. "Free power, irrigation, and groundwater depletion: Impact of farm electricity policy of Punjab, India," Agricultural Economics, International Association of Agricultural Economists, vol. 54(4), pages 515-541, July.
    7. Ram Fishman & Upmanu Lall & Vijay Modi & Nikunj Parekh, 2016. "Can Electricity Pricing Save India’s Groundwater? Field Evidence from a Novel Policy Mechanism in Gujarat," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(4), pages 819-855.
    8. Namara, Regassa E. & Hanjra, Munir A. & Castillo, Gina E. & Ravnborg, Helle Munk & Smith, Lawrence & Van Koppen, Barbara, 2010. "Agricultural water management and poverty linkages," Agricultural Water Management, Elsevier, vol. 97(4), pages 520-527, April.
    9. Malte Müller & Jens Rommel & Christian Kimmich, 2018. "Farmers’ Adoption of Irrigation Technologies: Experimental Evidence from a Coordination Game with Positive Network Externalities in India," German Economic Review, Verein für Socialpolitik, vol. 19(2), pages 119-139, May.
    10. Giordano, Meredith & de Fraiture, Charlotte, 2014. "Small private irrigation: Enhancing benefits and managing trade-offs," Agricultural Water Management, Elsevier, vol. 131(C), pages 175-182.
    11. Nihit Goyal & Michael Howlett & Namrata Chindarkar, 2020. "Who coupled which stream(s)? Policy entrepreneurship and innovation in the energy–water nexus in Gujarat, India," Public Administration & Development, Blackwell Publishing, vol. 40(1), pages 49-64, February.
    12. Jayanath Ananda & Mohamed Aheeyar, 2020. "An evaluation of groundwater institutions in India: a property rights perspective," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5731-5749, August.
    13. Venot, Jean-Philippe & Reddy, V. Ratna & Umapathy, Deeptha, 2010. "Coping with drought in irrigated South India: Farmers' adjustments in Nagarjuna Sagar," Agricultural Water Management, Elsevier, vol. 97(10), pages 1434-1442, October.
    14. World Bank, 2020. "Managing Groundwater for Drought Resilience in South Asia," World Bank Publications - Reports 33332, The World Bank Group.
    15. Sharma, Bharat & Molden, D. & Cook, Simon, 2015. "Water use efficiency in agriculture: measurement, current situation and trends," IWMI Books, Reports H046807, International Water Management Institute.
    16. Malik, R. P. S., 2009. "Energy regulations as a demand management option: potentials, problems and prospects," IWMI Books, Reports H042161, International Water Management Institute.
    17. Sudatta Ray & Hemant K. Pullabhotla, 2023. "The changing impact of rural electrification on Indian agriculture," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. Aarnoudse, E. & Closas, Alvar & Lefore, Nicole, 2018. "Water user associations: a review of approaches and alternative management options for Sub-Saharan Africa," IWMI Working Papers H048782, International Water Management Institute.
    19. Clement, Floriane & Ishaq, Saba & Samad, Madar & Acharya, N. Sreedhar & Radha, A. Venkata & Haileslassie, A. & Blummel, M. & Dey, A. & Khan, M. A. & Shindey, D. N. & Mit, R., 2010. "Improving water productivity, reducing poverty and enhancing equity in mixed crop-livestock systems in the Indo-Gangetic Basin: CPWF project report 68," IWMI Research Reports H043549, International Water Management Institute.
    20. Zhao, Wenzhi & Chang, Xuexiang & Chang, Xueli & Zhang, Dengrong & Liu, Bing & Du, Jun & Lin, Pengfei, 2018. "Estimating water consumption based on meta-analysis and MODIS data for an oasis region in northwestern China," Agricultural Water Management, Elsevier, vol. 208(C), pages 478-489.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:wdevel:v:128:y:2020:i:c:s0305750x19304851. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/worlddev .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.