IDEAS home Printed from https://ideas.repec.org/a/eee/wdevel/v121y2019icp178-187.html
   My bibliography  Save this article

National Consumption and Global Trade Impacts on Biodiversity

Author

Listed:
  • Chaudhary, Abhishek
  • Brooks, Thomas M.

Abstract

Effective and equitable conservation requires understanding of the global biodiversity impacts inflicted by consumption in individual countries and those embodied in international trade. Research to date has ascertained these impacts in terms of threats, but not on species directly. Here we use a novel approach, by parametrizing the countryside species-area relationship (SAR) (a). Using a recent high-resolution and harmonized global land use map along with (b). IUCN habitat classification data for all 22,386 mammal, bird, and amphibian species, to project endemic species extinctions due to habitat loss to date across all 804 terrestrial ecoregions; and then, (c). Validating the projected extinctions with IUCN Red List. We allocate projected extinctions to the agriculture, pasture, urban, and forestry areas used, traded, and consumed in 129 countries, using an environmentally extended global multi-regional input output database. Results show that for the three taxa combined, a total of 927 endemic species are projected to go extinct due to the impacts of current global land use. The taxonomic breakdown is 186 projected mammal extinctions, 170 birds, and 571 amphibians, with global agriculture land use responsible for 267 projected extinctions; pasture 314, forestry 313, and urbanization 32. Importantly, countryside SAR projections compare well with the number of extinct and threatened species documented by the IUCN Red List. We found that land use for export production is responsible for 25% of these projected global extinctions. Our approach enables parametrization of countryside SARs in any world region even without extensive field studies, and therefore allows quantitative assessment of biodiversity impacts under alternative land use scenarios. Overall, our approach and findings can inform sustainability assessment of commodity supply-chains as well as specific national actions toward achievement of the Aichi 2020 and UN Sustainable Development Goals.

Suggested Citation

  • Chaudhary, Abhishek & Brooks, Thomas M., 2019. "National Consumption and Global Trade Impacts on Biodiversity," World Development, Elsevier, vol. 121(C), pages 178-187.
  • Handle: RePEc:eee:wdevel:v:121:y:2019:i:c:p:178-187
    DOI: 10.1016/j.worlddev.2017.10.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305750X17303261
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.worlddev.2017.10.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Petr Keil & David Storch & Walter Jetz, 2015. "On the decline of biodiversity due to area loss," Nature Communications, Nature, vol. 6(1), pages 1-11, December.
    2. James E. M. Watson & Nigel Dudley & Daniel B. Segan & Marc Hockings, 2014. "The performance and potential of protected areas," Nature, Nature, vol. 515(7525), pages 67-73, November.
    3. M. Lenzen & D. Moran & K. Kanemoto & B. Foran & L. Lobefaro & A. Geschke, 2012. "International trade drives biodiversity threats in developing nations," Nature, Nature, vol. 486(7401), pages 109-112, June.
    4. Godar, Javier & Persson, U. Martin & Tizado, E. Jorge & Meyfroidt, Patrick, 2015. "Towards more accurate and policy relevant footprint analyses: Tracing fine-scale socio-environmental impacts of production to consumption," Ecological Economics, Elsevier, vol. 112(C), pages 25-35.
    5. G. Hurtt & L. Chini & S. Frolking & R. Betts & J. Feddema & G. Fischer & J. Fisk & K. Hibbard & R. Houghton & A. Janetos & C. Jones & G. Kindermann & T. Kinoshita & Kees Klein Goldewijk & K. Riahi & E, 2011. "Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands," Climatic Change, Springer, vol. 109(1), pages 117-161, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erbaugh, James & Bierbaum, Rosina & Castilleja, Guillermo & da Fonseca, Gustavo A.B. & Hansen, Steffen Cole Brandstrup, 2019. "Toward sustainable agriculture in the tropics," World Development, Elsevier, vol. 121(C), pages 158-162.
    2. Ciara L. Hovis & Yue Dou & Anna Herzberger & Jianguo Liu, 2021. "Through the Lens of Telecoupling and Metacoupling: New Perspectives for Global Sustainability," Sustainability, MDPI, vol. 13(5), pages 1-8, March.
    3. Late Lawson & Lawson Late, 2020. "A simple Ricardo-Malthusian model of population, deforestation and biodiversity loss," Working Papers 2020.08, FAERE - French Association of Environmental and Resource Economists.
    4. Paradis, Emmanuel, 2021. "Forest gains and losses in Southeast Asia over 27 years: The slow convergence towards reforestation," Forest Policy and Economics, Elsevier, vol. 122(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taherzadeh, Oliver, 2020. "Locating pressures on water, energy and land resources across global supply chains," SocArXiv ue45p, Center for Open Science.
    2. Meghan Beck-O’Brien & Stefan Bringezu, 2021. "Biodiversity Monitoring in Long-Distance Food Supply Chains: Tools, Gaps and Needs to Meet Business Requirements and Sustainability Goals," Sustainability, MDPI, vol. 13(15), pages 1-23, July.
    3. Venn, Tyron J., 2023. "Reconciling timber harvesting, biodiversity conservation and carbon sequestration in Queensland, Australia," Forest Policy and Economics, Elsevier, vol. 152(C).
    4. Arendarczyk, Bart & Alexander, Peter & Brown, Calum & Rounsevell, Mark, 2023. "The impact of UK food and bioenergy imports on global land use under future socioeconomic scenarios (UK-SSPs)," 97th Annual Conference, March 27-29, 2023, Warwick University, Coventry, UK 334509, Agricultural Economics Society - AES.
    5. Thomas Wiedmann, 2017. "An input–output virtual laboratory in practice – survey of uptake, usage and applications of the first operational IELab," Economic Systems Research, Taylor & Francis Journals, vol. 29(2), pages 296-312, April.
    6. Chunrong Mi & Liang Ma & Mengyuan Yang & Xinhai Li & Shai Meiri & Uri Roll & Oleksandra Oskyrko & Daniel Pincheira-Donoso & Lilly P. Harvey & Daniel Jablonski & Barbod Safaei-Mahroo & Hanyeh Ghaffari , 2023. "Global Protected Areas as refuges for amphibians and reptiles under climate change," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Carina Mueller & Christopher West & Mairon G. Bastos Lima & Bob Doherty, 2023. "Demand-Side Actors in Agricultural Supply Chain Sustainability: An Assessment of Motivations for Action, Implementation Challenges, and Research Frontiers," World, MDPI, vol. 4(3), pages 1-20, September.
    8. Ming-Kuang Chung & Dau-Jye Lu & Bor-Wen Tsai & Kuei-Tien Chou, 2019. "Assessing Effectiveness of PPGIS on Protected Areas by Governance Quality: A Case Study of Community-Based Monitoring in Wu-Wei-Kang Wildlife Refuge, Taiwan," Sustainability, MDPI, vol. 11(15), pages 1-20, August.
    9. Lilian Cervo Cabrera & Carlos Eduardo Caldarelli & Marcia Regina Gabardo Camara, 2020. "Mapping collaboration in international coffee certification research," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 2597-2618, September.
    10. Tingting Zhang & Dan He & Tian Kuang & Ke Chen, 2022. "Effect of Rural Human Settlement Environment around Nature Reserves on Farmers’ Well-Being: A Field Survey Based on 1002 Farmer Households around Six Nature Reserves in China," IJERPH, MDPI, vol. 19(11), pages 1-18, May.
    11. Bruckner, Martin & Giljum, Stefan & Fischer, Günther & Tramberend, Sylvia & Börner, Jan, 2018. "The global cropland footprint of the non-food bioeconomy," Discussion Papers 271062, University of Bonn, Center for Development Research (ZEF).
    12. Eivind Lekve Bjelle & Johannes Többen & Konstantin Stadler & Thomas Kastner & Michaela C. Theurl & Karl-Heinz Erb & Kjartan-Steen Olsen & Kirsten S. Wiebe & Richard Wood, 2020. "Adding country resolution to EXIOBASE: impacts on land use embodied in trade," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 9(1), pages 1-25, December.
    13. Thomas Campagnaro & Giovanni Trentanovi & Tommaso Sitzia, 2018. "Identifying Habitat Type Conservation Priorities under the Habitats Directive: Application to Two Italian Biogeographical Regions," Sustainability, MDPI, vol. 10(4), pages 1-20, April.
    14. Mi, Zhifu & Zhang, Yunkun & Guan, Dabo & Shan, Yuli & Liu, Zhu & Cong, Ronggang & Yuan, Xiao-Chen & Wei, Yi-Ming, 2016. "Consumption-based emission accounting for Chinese cities," Applied Energy, Elsevier, vol. 184(C), pages 1073-1081.
    15. Schaeffer, Michiel & Gohar, Laila & Kriegler, Elmar & Lowe, Jason & Riahi, Keywan & van Vuuren, Detlef, 2015. "Mid- and long-term climate projections for fragmented and delayed-action scenarios," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 257-268.
    16. Adam Pawlewicz & Wojciech Gotkiewicz & Katarzyna Brodzińska & Katarzyna Pawlewicz & Bartosz Mickiewicz & Paweł Kluczek, 2022. "Organic Farming as an Alternative Maintenance Strategy in the Opinion of Farmers from Natura 2000 Areas," IJERPH, MDPI, vol. 19(7), pages 1-22, March.
    17. Bruckner, Martin & Wood, Richard & Moran, Daniel & Kuschnig, Nikolas & Wieland, Hanspeter & Maus, Victor & Börner, Jan, 2019. "FABIO - The Construction of the Food and Agriculture Biomass Input-Output Model," Ecological Economic Papers 27, WU Vienna University of Economics and Business.
    18. Bonilla-Moheno, Martha & Aide, T. Mitchell, 2020. "Beyond deforestation: Land cover transitions in Mexico," Agricultural Systems, Elsevier, vol. 178(C).
    19. Anna Herzberger & Min Gon Chung & Kelly Kapsar & Kenneth A. Frank & Jianguo Liu, 2019. "Telecoupled Food Trade Affects Pericoupled Trade and Intracoupled Production," Sustainability, MDPI, vol. 11(10), pages 1-15, May.
    20. Qiaoqiao Zhan & Katsunori Furuya & Xiaolan Tang & Zhehui Li, 2024. "Policy Development in China’s Protected Scenic and Historic Areas," Land, MDPI, vol. 13(2), pages 1-24, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:wdevel:v:121:y:2019:i:c:p:178-187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/worlddev .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.