IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v98y2020icp127-138.html
   My bibliography  Save this article

The potential impacts of automated cars on urban transport: An exploratory analysis

Author

Listed:
  • May, Anthony D.
  • Shepherd, Simon
  • Pfaffenbichler, Paul
  • Emberger, Günter

Abstract

The concept of automated cars is rapidly becoming a reality. Yet there has been very little analysis of the impacts of such developments on the performance of urban transport systems. These impacts are potentially complex. On the positive side, automation has the potential to increase road capacity, make driving available to more people, and reduce accidents and emissions. On the negative side, it could attract users away from public transport, walking and cycling, substantially increase traffic levels and stimulate urban sprawl. These impacts cannot currently be measured empirically and, by the time that they can, it will be too late to change the implementation model to rectify any resulting problems. Predictive assessments are therefore needed. This paper considers the possible impacts of automated vehicles, predicts their effects on the urban land use and transport system, and discusses the policy implications. We focus on automation of the car fleet, and do not consider the potential of automation of public transport or freight.

Suggested Citation

  • May, Anthony D. & Shepherd, Simon & Pfaffenbichler, Paul & Emberger, Günter, 2020. "The potential impacts of automated cars on urban transport: An exploratory analysis," Transport Policy, Elsevier, vol. 98(C), pages 127-138.
  • Handle: RePEc:eee:trapol:v:98:y:2020:i:c:p:127-138
    DOI: 10.1016/j.tranpol.2020.05.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X20303619
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2020.05.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul Pfaffenbichler & Günter Emberger & Simon Shepherd, 2008. "The Integrated Dynamic Land Use and Transport Model MARS," Networks and Spatial Economics, Springer, vol. 8(2), pages 183-200, September.
    2. Wadud, Zia & MacKenzie, Don & Leiby, Paul, 2016. "Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 1-18.
    3. Paul Pfaffenbichler, 2011. "Modelling with Systems Dynamics as a Method to Bridge the Gap between Politics, Planning and Science? Lessons Learnt from the Development of the Land Use and Transport Model MARS," Transport Reviews, Taylor & Francis Journals, vol. 31(2), pages 267-289.
    4. Reza Vosooghi & Joseph Kamel & Jakob Puchinger & Vincent Leblond & Marija Jankovic, 2019. "Robo-Taxi service fleet sizing: assessing the impact of user trust and willingness-to-use," Transportation, Springer, vol. 46(6), pages 1997-2015, December.
    5. Jingya Gao & Andisheh Ranjbari & Don MacKenzie, 2019. "Would being driven by others affect the value of travel time? Ridehailing as an analogy for automated vehicles," Transportation, Springer, vol. 46(6), pages 2103-2116, December.
    6. Milakis, Dimitris & Kroesen, Maarten & van Wee, Bert, 2018. "Implications of automated vehicles for accessibility and location choices: Evidence from an expert-based experiment," Journal of Transport Geography, Elsevier, vol. 68(C), pages 142-148.
    7. Pau Segui-Gasco & Haris Ballis & Vittoria Parisi & David G. Kelsall & Robin J. North & Didac Busquets, 2019. "Simulating a rich ride-share mobility service using agent-based models," Transportation, Springer, vol. 46(6), pages 2041-2062, December.
    8. Hensher, David A., 2018. "Tackling road congestion – What might it look like in the future under a collaborative and connected mobility model?," Transport Policy, Elsevier, vol. 66(C), pages 1-8.
    9. Zakharenko, Roman, 2016. "Self-driving cars will change cities," Regional Science and Urban Economics, Elsevier, vol. 61(C), pages 26-37.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin, Tanhua & Cheng, Long & Wang, Kailai & Cao, Jun & Huang, Haosheng & Witlox, Frank, 2022. "Examining equity in accessibility to multi-tier healthcare services across different income households using estimated travel time," Transport Policy, Elsevier, vol. 121(C), pages 1-13.
    2. Monika Büscher & Cronan Cronshaw & Alistair Kirkbride & Nicola Spurling, 2023. "Making Response-Ability: Societal Readiness Assessment for Sustainability Governance," Sustainability, MDPI, vol. 15(6), pages 1-23, March.
    3. Alberto Dianin & Elisa Ravazzoli & Georg Hauger, 2021. "Implications of Autonomous Vehicles for Accessibility and Transport Equity: A Framework Based on Literature," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
    4. Nikitas, Alexandros & Parkinson, Simon & Vallati, Mauro, 2022. "The deceitful Connected and Autonomous Vehicle: Defining the concept, contextualising its dimensions and proposing mitigation policies," Transport Policy, Elsevier, vol. 122(C), pages 1-10.
    5. Haotian Zhong & Wei Li, 2023. "What if autonomous vehicles had been introduced into cities? A counterfactual analysis," Urban Studies, Urban Studies Journal Limited, vol. 60(16), pages 3198-3215, December.
    6. Jiang, Like & Chen, Haibo & Paschalidis, Evangelos, 2023. "Diffusion of connected and autonomous vehicles concerning mode choice, policy interventions and sustainability impacts: A system dynamics modelling study," Transport Policy, Elsevier, vol. 141(C), pages 274-290.
    7. You Kong & Jihong Ou & Longfei Chen & Fengchun Yang & Bo Yu, 2023. "The Environmental Impacts of Automated Vehicles on Parking: A Systematic Review," Sustainability, MDPI, vol. 15(20), pages 1-21, October.
    8. Shibayama, Takeru & Emberger, Günter, 2020. "New mobility services: Taxonomy, innovation and the role of ICTs," Transport Policy, Elsevier, vol. 98(C), pages 79-90.
    9. Sarri, Paraskevi & Kaparias, Ioannis & Preston, John & Simmonds, David, 2023. "Using Land Use and Transportation Interaction (LUTI) models to determine land use effects from new vehicle transportation technologies; a regional scale of analysis," Transport Policy, Elsevier, vol. 135(C), pages 91-111.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gu, Yewen & Goez, Julio C. & Mario, Guajardo & Wallace, Stein W., 2019. "Autonomous vessels: State of the art and potential opportunities in logistics," Discussion Papers 2019/6, Norwegian School of Economics, Department of Business and Management Science.
    2. Rubén Cordera & Soledad Nogués & Esther González-González & José Luis Moura, 2021. "Modeling the Impacts of Autonomous Vehicles on Land Use Using a LUTI Model," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    3. Lee, Jaehyung & Lee, Euntak & Yun, Jaewoong & Chung, Jin-Hyuk & Kim, Jinhee, 2021. "Latent heterogeneity in autonomous driving preferences and in-vehicle activities by travel distance," Journal of Transport Geography, Elsevier, vol. 94(C).
    4. Li, Dun & Huang, Youlin & Qian, Lixian, 2022. "Potential adoption of robotaxi service: The roles of perceived benefits to multiple stakeholders and environmental awareness," Transport Policy, Elsevier, vol. 126(C), pages 120-135.
    5. Emberger, Guenter & Pfaffenbichler, Paul, 2020. "A quantitative analysis of potential impacts of automated vehicles in Austria using a dynamic integrated land use and transport interaction model," Transport Policy, Elsevier, vol. 98(C), pages 57-67.
    6. Dilshad Mohammed & Balázs Horváth, 2023. "Travel Demand Increment Due to the Use of Autonomous Vehicles," Sustainability, MDPI, vol. 15(11), pages 1-20, June.
    7. Becker, Henrik & Becker, Felix & Abe, Ryosuke & Bekhor, Shlomo & Belgiawan, Prawira F. & Compostella, Junia & Frazzoli, Emilio & Fulton, Lewis M. & Guggisberg Bicudo, Davi & Murthy Gurumurthy, Krishna, 2020. "Impact of vehicle automation and electric propulsion on production costs for mobility services worldwide," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 105-126.
    8. Wadud, Zia & Mattioli, Giulio, 2021. "Fully automated vehicles: A cost-based analysis of the share of ownership and mobility services, and its socio-economic determinants," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 228-244.
    9. Millard-Ball, Adam, 2019. "The autonomous vehicle parking problem," Transport Policy, Elsevier, vol. 75(C), pages 99-108.
    10. Schweitzer, Nicola & Hofmann, Rupert & Meinheit, Andreas, 2019. "Strategic customer foresight: From research to strategic decision-making using the example of highly automated vehicles," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 49-65.
    11. Latham, Alan & Nattrass, Michael, 2019. "Autonomous vehicles, car-dominated environments, and cycling: Using an ethnography of infrastructure to reflect on the prospects of a new transportation technology," Journal of Transport Geography, Elsevier, vol. 81(C).
    12. Kassens-Noor, Eva & Dake, Dana & Decaminada, Travis & Kotval-K, Zeenat & Qu, Teresa & Wilson, Mark & Pentland, Brian, 2020. "Sociomobility of the 21st century: Autonomous vehicles, planning, and the future city," Transport Policy, Elsevier, vol. 99(C), pages 329-335.
    13. Carrese, Stefano & Nigro, Marialisa & Patella, Sergio Maria & Toniolo, Eleonora, 2019. "A preliminary study of the potential impact of autonomous vehicles on residential location in Rome," Research in Transportation Economics, Elsevier, vol. 75(C), pages 55-61.
    14. Xiaojuan Yu & Vincent van den Berg & Erik Verhoef, 2019. "Autonomous cars and dynamic bottleneck congestion revisited: how in-vehicle activities determine aggregate travel patterns," Tinbergen Institute Discussion Papers 19-067/VIII, Tinbergen Institute.
    15. Polydoropoulou, Amalia & Pagoni, Ioanna & Tsirimpa, Athena & Roumboutsos, Athena & Kamargianni, Maria & Tsouros, Ioannis, 2020. "Prototype business models for Mobility-as-a-Service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 149-162.
    16. Rounaq Basu & Joseph Ferreira, 2020. "A LUTI microsimulation framework to evaluate long-term impacts of automated mobility on the choice of housing-mobility bundles," Environment and Planning B, , vol. 47(8), pages 1397-1417, October.
    17. Marcos Medina-Tapia & Francesc Robusté, 2019. "Implementation of Connected and Autonomous Vehicles in Cities Could Have Neutral Effects on the Total Travel Time Costs: Modeling and Analysis for a Circular City," Sustainability, MDPI, vol. 11(2), pages 1-18, January.
    18. Marc-Olivier Pepin & Georges A. Tanguay, 2019. "Estimation of Car Trips Generated by the Arrival of Autonomous Vehicles in the Montreal Metropolitan Area," CIRANO Working Papers 2019s-17, CIRANO.
    19. Nogués, Soledad & González-González, Esther & Cordera, Rubén, 2020. "New urban planning challenges under emerging autonomous mobility: evaluating backcasting scenarios and policies through an expert survey," Land Use Policy, Elsevier, vol. 95(C).
    20. Martin Adler & Stefanie Peer & Tanja Sinozic, 2019. "Autonomous, Connected, Electric Shared vehicles (ACES) and public finance: an explorative analysis," Tinbergen Institute Discussion Papers 19-005/VIII, Tinbergen Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:98:y:2020:i:c:p:127-138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.