IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v126y2022icp239-248.html
   My bibliography  Save this article

Revisiting important ports in container shipping networks: A structural hole-based approach

Author

Listed:
  • Zhang, Qiang
  • Pu, Shunhao
  • Luo, Lihua
  • Liu, Zhichao
  • Xu, Jie

Abstract

Transshipment ports are important constituents of the global and regional container shipping networks. Betweenness centrality is often used to identify transshipment ports by focusing on the global topology of the shipping network without adequate consideration of local topologies of ports’ ego shipping networks, and therefore some ports that are playing intermediary roles as hubs within the regional scopes may not be recognized sufficiently. The structural hole theory is introduced to detect regional transshipment ports by paying more attention on local topologies. The results show that the structural hole-based approach can effectively identify some relatively small transshipment ports at the regional level, which are important supplementaries to the detected ports based on betweenness centralities. Las Palmas Port is taken as an illustration to explain how a port occupying the position of a structural hole is likely to become the regional hub by functioning as a connecting bridge. Several policy implications are further elaborated for relevant decision-makers such as liner companies, port authorities and international port operators.

Suggested Citation

  • Zhang, Qiang & Pu, Shunhao & Luo, Lihua & Liu, Zhichao & Xu, Jie, 2022. "Revisiting important ports in container shipping networks: A structural hole-based approach," Transport Policy, Elsevier, vol. 126(C), pages 239-248.
  • Handle: RePEc:eee:trapol:v:126:y:2022:i:c:p:239-248
    DOI: 10.1016/j.tranpol.2022.07.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X22002086
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2022.07.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dodourova, Mariana & Bevis, Keith, 2014. "Networking innovation in the European car industry: Does the Open Innovation model fit?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 252-271.
    2. Yang, Zhongzhen & Xiu, Qinghui & Chen, Dongxu, 2019. "Historical changes in the port and shipping industry in Hong Kong and the underlying policies," Transport Policy, Elsevier, vol. 82(C), pages 138-147.
    3. Laurence Saglietto & Cécile Cézanne & Delphine David, 2020. "Research On Structural Holes: An Assessment On Measurement Issues," Journal of Economic Surveys, Wiley Blackwell, vol. 34(3), pages 572-593, July.
    4. Wan, Zheng & Zhang, Yang & Wang, Xuefeng & Chen, Jihong, 2014. "Policy and politics behind Shanghai’s Free Trade Zone Program," Journal of Transport Geography, Elsevier, vol. 34(C), pages 1-6.
    5. McCalla, Robert J., 2008. "Container transshipment at Kingston, Jamaica," Journal of Transport Geography, Elsevier, vol. 16(3), pages 182-190.
    6. César Ducruet & Faraz Zaidi, 2012. "Maritime constellations : A complex network approach to shipping and ports," Post-Print hal-03246963, HAL.
    7. Brunetta, Federica & Boccardelli, Paolo & Lipparini, Andrea, 2015. "Central positions and performance in the scientific community. Evidences from clinical research projects," Journal of Business Research, Elsevier, vol. 68(5), pages 1074-1081.
    8. Chengliang Liu & Jiaqi Wang & Hong Zhang, 2018. "Spatial heterogeneity of ports in the global maritime network detected by weighted ego network analysis," Maritime Policy & Management, Taylor & Francis Journals, vol. 45(1), pages 89-104, January.
    9. Jing-Jing Pan & Michael G. H. Bell & Kam-Fung Cheung & Supun Perera & Hang Yu, 2019. "Connectivity analysis of the global shipping network by eigenvalue decomposition," Maritime Policy & Management, Taylor & Francis Journals, vol. 46(8), pages 957-966, November.
    10. Tovar, Beatriz & Hernández, Rubén & Rodríguez-Déniz, Héctor, 2015. "Container port competitiveness and connectivity: The Canary Islands main ports case," Transport Policy, Elsevier, vol. 38(C), pages 40-51.
    11. César Ducruet & Faraz Zaidi, 2012. "Maritime constellations: a complex network approach to shipping and ports," Maritime Policy & Management, Taylor & Francis Journals, vol. 39(2), pages 151-168, March.
    12. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    13. Liu, ChengCheng & Lian, Feng & Yang, Zhongzhen, 2021. "Comparing the minimal costs of Arctic container shipping between China and Europe: A network schemes perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    14. César Ducruet & Sung-Woo Lee & Adolf Ng, 2010. "Centrality and vulnerability in liner shipping networks : revisiting the Northeast Asian port hierarchy," Post-Print hal-03246966, HAL.
    15. Hu, Yihong & Zhu, Daoli, 2009. "Empirical analysis of the worldwide maritime transportation network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(10), pages 2061-2071.
    16. Zhang, Xu & Zhang, Wei & Lee, Paul Tae-Woo, 2020. "Importance rankings of nodes in the China Railway Express network under the Belt and Road Initiative," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 134-147.
    17. Casanueva, Cristóbal & Gallego, Ángeles & Castro, Ignacio & Sancho, María, 2014. "Airline alliances: Mobilizing network resources," Tourism Management, Elsevier, vol. 44(C), pages 88-98.
    18. Yang, Dong & Li, Lu & Notteboom, Theo, 2022. "Chinese investment in overseas container terminals: The role of investor attributes in achieving a higher port competitiveness," Transport Policy, Elsevier, vol. 118(C), pages 112-122.
    19. César Ducruet & Theo E. Notteboom, 2012. "The worldwide maritime network of container shipping: Spatial structure and regional dynamics," Post-Print halshs-00538051, HAL.
    20. Rodrigue, Jean-Paul & Ashar, Asaf, 2016. "Transshipment hubs in the New Panamax Era: The role of the Caribbean," Journal of Transport Geography, Elsevier, vol. 51(C), pages 270-279.
    21. César Ducruet & Céline Rozenblat & Faraz Zaidi, 2010. "Ports in multi-level maritime networks : Evidence from the Atlantic (1996-2006)," Post-Print hal-03247133, HAL.
    22. Yang, Jinglei & Luo, Meifeng & Ji, Abing, 2016. "Analyzing the spatial–temporal evolution of a gateway’s hinterland: A case study of Shanghai, China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 355-367.
    23. Notteboom, Theo E. & Parola, Francesco & Satta, Giovanni, 2019. "The relationship between transhipment incidence and throughput volatility in North European and Mediterranean container ports," Journal of Transport Geography, Elsevier, vol. 74(C), pages 371-381.
    24. César Ducruet & Sung-Woo Lee & Adolf K.Y. Ng, 2010. "Centrality and vulnerability in liner shipping networks: revisiting the Northeast Asian port hierarchy," Maritime Policy & Management, Taylor & Francis Journals, vol. 37(1), pages 17-36, January.
    25. César Ducruet & Theo Notteboom, 2012. "The worldwide maritime network of container shipping : Spatial structure and regional dynamics," Post-Print hal-03246962, HAL.
    26. González Laxe, Fernando & Jesus Freire Seoane, Maria & Pais Montes, Carlos, 2012. "Maritime degree, centrality and vulnerability: port hierarchies and emerging areas in containerized transport (2008–2010)," Journal of Transport Geography, Elsevier, vol. 24(C), pages 33-44.
    27. Wang, Yuhong & Cullinane, Kevin, 2016. "Determinants of port centrality in maritime container transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 326-340.
    28. Wang, Longjian & Zheng, Shaoya & Wang, Yonggang & Wang, Longfei, 2021. "Identification of critical nodes in multimodal transportation network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    29. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    30. Hu, Ping & Mei, Ting, 2018. "Ranking influential nodes in complex networks with structural holes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 624-631.
    31. Chen, Kang & Xu, Shihe & Haralambides, Hercules, 2020. "Determining hub port locations and feeder network designs: The case of China-West Africa trade," Transport Policy, Elsevier, vol. 86(C), pages 9-22.
    32. Tichavska, Miluše & Tovar, Beatriz, 2015. "Environmental cost and eco-efficiency from vessel emissions in Las Palmas Port," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 83(C), pages 126-140.
    33. Ducruet, César & Rozenblat, Céline & Zaidi, Faraz, 2010. "Ports in multi-level maritime networks: evidence from the Atlantic (1996–2006)," Journal of Transport Geography, Elsevier, vol. 18(4), pages 508-518.
    34. Di Wu & Nuo Wang & Anqi Yu & Nuan Wu, 2019. "Vulnerability analysis of global container shipping liner network based on main channel disruption," Maritime Policy & Management, Taylor & Francis Journals, vol. 46(4), pages 394-409, May.
    35. César Ducruet & Faraz Zaidi, 2012. "Maritime constellations: A complex network approach to shipping and ports," Post-Print halshs-00551207, HAL.
    36. Notteboom, Theo E., 2010. "Concentration and the formation of multi-port gateway regions in the European container port system: an update," Journal of Transport Geography, Elsevier, vol. 18(4), pages 567-583.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicanor García Álvarez & Belarmino Adenso-Díaz & Laura Calzada-Infante, 2021. "Maritime Traffic as a Complex Network: a Systematic Review," Networks and Spatial Economics, Springer, vol. 21(2), pages 387-417, June.
    2. César Ducruet, 2020. "The geography of maritime networks: A critical review," Post-Print halshs-02922543, HAL.
    3. Tocchi, Daniela & Sys, Christa & Papola, Andrea & Tinessa, Fiore & Simonelli, Fulvio & Marzano, Vittorio, 2022. "Hypergraph-based centrality metrics for maritime container service networks: A worldwide application," Journal of Transport Geography, Elsevier, vol. 98(C).
    4. Ge, Jiawei & fu, Qiang & Zhang, Qiang & Wan, Zheng, 2022. "Regional operating patterns of world container shipping network: A perspective from motif identification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    5. Cheung, Kam-Fung & Bell, Michael G.H. & Pan, Jing-Jing & Perera, Supun, 2020. "An eigenvector centrality analysis of world container shipping network connectivity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    6. Xu, Mengqiao & Li, Zhenfu & Shi, Yanlei & Zhang, Xiaoling & Jiang, Shufei, 2015. "Evolution of regional inequality in the global shipping network," Journal of Transport Geography, Elsevier, vol. 44(C), pages 1-12.
    7. Jung, Paul H. & Thill, Jean-Claude, 2022. "Sea-land interdependence and delimitation of port hinterland-foreland structures in the international transportation system," Journal of Transport Geography, Elsevier, vol. 99(C).
    8. Tovar, Beatriz & Hernández, Rubén & Rodríguez-Déniz, Héctor, 2015. "Container port competitiveness and connectivity: The Canary Islands main ports case," Transport Policy, Elsevier, vol. 38(C), pages 40-51.
    9. Ducruet, César, 2020. "The geography of maritime networks: A critical review," Journal of Transport Geography, Elsevier, vol. 88(C).
    10. César Ducruet & Hidekazu Itoh & Justin Berli, 2020. "Urban gravity in the global container shipping network," Post-Print halshs-02588449, HAL.
    11. Liu, Qing & Yang, Yang & Ke, Luqi & Ng, Adolf K.Y., 2022. "Structures of port connectivity, competition, and shipping networks in Europe," Journal of Transport Geography, Elsevier, vol. 102(C).
    12. Oliveira, Gabriel Figueiredo de & Schaffar, Alexandra & Cariou, Pierre & Monios, Jason, 2021. "Convergence and growth traps in container ports," Transport Policy, Elsevier, vol. 110(C), pages 170-180.
    13. Calatayud, Agustina & Mangan, John & Palacin, Roberto, 2017. "Connectivity to international markets: A multi-layered network approach," Journal of Transport Geography, Elsevier, vol. 61(C), pages 61-71.
    14. Nguyen Tran & Hans-Dietrich Haasis, 2014. "Empirical analysis of the container liner shipping network on the East-West corridor (1995–2011)," Netnomics, Springer, vol. 15(3), pages 121-153, November.
    15. Ducruet, César & Itoh, Hidekazu & Berli, Justin, 2020. "Urban gravity in the global container shipping network," Journal of Transport Geography, Elsevier, vol. 85(C).
    16. Liu, Honglu & Tian, Zhihong & Huang, Anqiang & Yang, Zaili, 2018. "Analysis of vulnerabilities in maritime supply chains," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 475-484.
    17. Tagawa, Hoshi & Kawasaki, Tomoya & Hanaoka, Shinya, 2022. "Evaluation of international maritime network configuration and impact of port cooperation on port hierarchy," Transport Policy, Elsevier, vol. 123(C), pages 14-24.
    18. Viljoen, Nadia M. & Joubert, Johan W., 2016. "The vulnerability of the global container shipping network to targeted link disruption," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 396-409.
    19. Koi Yu Adolf Ng & César Ducruet, 2014. "The changing tides of port geography (1950–2012)," Post-Print halshs-01359160, HAL.
    20. Freire Seoane, Maria Jesus & González Laxe, Fernando & Pais Montes, Carlos, 2013. "Foreland determination for containership and general cargo ports in Europe (2007–2011)," Journal of Transport Geography, Elsevier, vol. 30(C), pages 56-67.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:126:y:2022:i:c:p:239-248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.