IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v153y2021ics1366554521001897.html
   My bibliography  Save this article

Comparing the minimal costs of Arctic container shipping between China and Europe: A network schemes perspective

Author

Listed:
  • Liu, ChengCheng
  • Lian, Feng
  • Yang, Zhongzhen

Abstract

To optimize the container liner shipping scheme between China and Europe as the possibility of Arctic shipping opens up, the operational behaviors of liner shipping companies are considered and potential shipping scheme are proposed. Fulfilling known port container OD flows, a model is built to optimize the liner shipping network corresponding to each proposed shipping scheme, where a single fleet or two fleets pass the Arctic or the Suez Canal. The profits of the liner company in the next 20 years under different schemes are compared. It is found that it is uneconomic to sail the Arctic for liner shipping between China and Europe and the Suez Canal Route is a better choice at present and far into the future.

Suggested Citation

  • Liu, ChengCheng & Lian, Feng & Yang, Zhongzhen, 2021. "Comparing the minimal costs of Arctic container shipping between China and Europe: A network schemes perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
  • Handle: RePEc:eee:transe:v:153:y:2021:i:c:s1366554521001897
    DOI: 10.1016/j.tre.2021.102423
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554521001897
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2021.102423?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Theocharis, Dimitrios & Rodrigues, Vasco Sanchez & Pettit, Stephen & Haider, Jane, 2019. "Feasibility of the Northern Sea Route: The role of distance, fuel prices, ice breaking fees and ship size for the product tanker market," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 111-135.
    2. Hua Xu & Dong Yang & Jinxian Weng, 2018. "Economic feasibility of an NSR/SCR-combined container service on the Asia-Europe lane: a new approach dynamically considering sea ice extent," Maritime Policy & Management, Taylor & Francis Journals, vol. 45(4), pages 514-529, May.
    3. Richa Agarwal & Özlem Ergun, 2008. "Ship Scheduling and Network Design for Cargo Routing in Liner Shipping," Transportation Science, INFORMS, vol. 42(2), pages 175-196, May.
    4. Shengda Zhu & Xiaowen Fu & Adolf K.Y. Ng & Meifeng Luo & Ying-En Ge, 2018. "The environmental costs and economic implications of container shipping on the Northern Sea Route," Maritime Policy & Management, Taylor & Francis Journals, vol. 45(4), pages 456-477, May.
    5. Shintani, Koichi & Imai, Akio & Nishimura, Etsuko & Papadimitriou, Stratos, 2007. "The container shipping network design problem with empty container repositioning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(1), pages 39-59, January.
    6. Eddy Bekkers & Joseph F. Francois & Hugo Rojas†Romagosa, 2018. "Melting Ice Caps and the Economic Impact of Opening the Northern Sea Route," Economic Journal, Royal Economic Society, vol. 128(610), pages 1095-1127, May.
    7. Qiang Meng & Shuaian Wang & Henrik Andersson & Kristian Thun, 2014. "Containership Routing and Scheduling in Liner Shipping: Overview and Future Research Directions," Transportation Science, INFORMS, vol. 48(2), pages 265-280, May.
    8. Verny, Jerome & Grigentin, Christophe, 2009. "Container shipping on the Northern Sea Route," International Journal of Production Economics, Elsevier, vol. 122(1), pages 107-117, November.
    9. Chen, Kang & Yang, Zhongzhen & Notteboom, Theo, 2014. "The design of coastal shipping services subject to carbon emission reduction targets and state subsidy levels," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 192-211.
    10. Zhang, Yiru & Meng, Qiang & Ng, Szu Hui, 2016. "Shipping efficiency comparison between Northern Sea Route and the conventional Asia-Europe shipping route via Suez Canal," Journal of Transport Geography, Elsevier, vol. 57(C), pages 241-249.
    11. Jérôme Verny & Christophe Grigentin, 2009. "Container shipping on the Northern Sea Route," Post-Print hal-00568193, HAL.
    12. Wang, Hua & Zhang, Yiru & Meng, Qiang, 2018. "How will the opening of the Northern Sea Route influence the Suez Canal Route? An empirical analysis with discrete choice models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 107(C), pages 75-89.
    13. Chien-Yun Yuan & Cheng-Hsien Hsieh & Dong-Taur Su, 2020. "Effects of new shipping routes on the operational resilience of container lines: potential impacts of the Arctic Sea Route and the Kra Canal on the Europe-Far East seaborne trades," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(2), pages 308-325, June.
    14. Pesenti, Raffaele, 1995. "Hierarchical resource planning for shipping companies," European Journal of Operational Research, Elsevier, vol. 86(1), pages 91-102, October.
    15. Zheng Wan & Jiawei Ge & Jihong Chen, 2018. "Energy-Saving Potential and an Economic Feasibility Analysis for an Arctic Route between Shanghai and Rotterdam: Case Study from China’s Largest Container Sea Freight Operator," Sustainability, MDPI, vol. 10(4), pages 1-13, March.
    16. Lee, Taedong & Kim, Hyun Jung, 2015. "Barriers of voyaging on the Northern Sea Route: A perspective from shipping Companies," Marine Policy, Elsevier, vol. 62(C), pages 264-270.
    17. Julienne Stroeve & Mark Serreze & Marika Holland & Jennifer Kay & James Malanik & Andrew Barrett, 2012. "The Arctic’s rapidly shrinking sea ice cover: a research synthesis," Climatic Change, Springer, vol. 110(3), pages 1005-1027, February.
    18. Liu, Miaojia & Kronbak, Jacob, 2010. "The potential economic viability of using the Northern Sea Route (NSR) as an alternative route between Asia and Europe," Journal of Transport Geography, Elsevier, vol. 18(3), pages 434-444.
    19. Lin, Dung-Ying & Chang, Yu-Ting, 2018. "Ship routing and freight assignment problem for liner shipping: Application to the Northern Sea Route planning problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 47-70.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Qiang & Pu, Shunhao & Luo, Lihua & Liu, Zhichao & Xu, Jie, 2022. "Revisiting important ports in container shipping networks: A structural hole-based approach," Transport Policy, Elsevier, vol. 126(C), pages 239-248.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sibul, Gleb & Jin, Jian Gang, 2021. "Evaluating the feasibility of combined use of the Northern Sea Route and the Suez Canal Route considering ice parameters," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 350-369.
    2. Xu, Hua & Yin, Zhifang, 2021. "The optimal icebreaking tariffs and the economic performance of tramp shipping on the Northern Sea Route," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 76-97.
    3. Koçak, Saim Turgut & Yercan, Funda, 2021. "Comparative cost-effectiveness analysis of Arctic and international shipping routes: A Fuzzy Analytic Hierarchy Process," Transport Policy, Elsevier, vol. 114(C), pages 147-164.
    4. D. O. Eliseev & Yu. V. Naumova, 2021. "Simulation of Transit Transportation along the Northern Sea Route under Climate Change," Studies on Russian Economic Development, Springer, vol. 32(2), pages 160-168, March.
    5. Pierre Cariou & Ali Cheaitou & Olivier Faury & Sadeque Hamdan, 2021. "The feasibility of Arctic container shipping: the economic and environmental impacts of ice thickness," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(4), pages 615-631, December.
    6. Theocharis, Dimitrios & Pettit, Stephen & Rodrigues, Vasco Sanchez & Haider, Jane, 2018. "Arctic shipping: A systematic literature review of comparative studies," Journal of Transport Geography, Elsevier, vol. 69(C), pages 112-128.
    7. Theocharis, Dimitrios & Rodrigues, Vasco Sanchez & Pettit, Stephen & Haider, Jane, 2019. "Feasibility of the Northern Sea Route: The role of distance, fuel prices, ice breaking fees and ship size for the product tanker market," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 111-135.
    8. Lin, Dung-Ying & Chang, Yu-Ting, 2018. "Ship routing and freight assignment problem for liner shipping: Application to the Northern Sea Route planning problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 47-70.
    9. Tuomas Kiiski & Tomi Solakivi & Juuso Töyli & Lauri Ojala, 2018. "Long-term dynamics of shipping and icebreaker capacity along the Northern Sea Route," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 20(3), pages 375-399, September.
    10. Jingmiao Zhou & Kjetil Fagerholt & Yongjia Liu & Yuzhe Zhao, 2023. "Profitability prospects for container roll-on/roll-off shipping on the Northern Sea Route (NSR)," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(4), pages 778-816, December.
    11. Rigot-Müller, Patrick & Cheaitou, Ali & Etienne, Laurent & Faury, Olivier & Fedi, Laurent, 2022. "The role of polarseaworthiness in shipping planning for infrastructure projects in the Arctic: The case of Yamal LNG plant," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 330-353.
    12. Wang, Hua & Wang, Shuaian & Meng, Qiang, 2014. "Simultaneous optimization of schedule coordination and cargo allocation for liner container shipping networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 261-273.
    13. Theocharis, Dimitrios & Rodrigues, Vasco Sanchez & Pettit, Stephen & Haider, Jane, 2021. "Feasibility of the Northern Sea Route for seasonal transit navigation: The role of ship speed on ice and alternative fuel types for the oil product tanker market," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 259-283.
    14. Chen, Kang & Chen, Dongxu & Sun, Xueshan & Yang, Zhongzhen, 2016. "Container Ocean-transportation System Design with the factors of demand fluctuation and choice inertia of shippers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 267-281.
    15. Wang, Yangjun & Liu, Kefeng & Zhang, Ren & Qian, Longxia & Shan, Yulong, 2021. "Feasibility of the Northeast Passage: The role of vessel speed, route planning, and icebreaking assistance determined by sea-ice conditions for the container shipping market during 2020–2030," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    16. Eddy Bekkers & Joseph F. Francois & Hugo Rojas†Romagosa, 2018. "Melting Ice Caps and the Economic Impact of Opening the Northern Sea Route," Economic Journal, Royal Economic Society, vol. 128(610), pages 1095-1127, May.
    17. Nguyen Khoi Tran & Hans-Dietrich Haasis & Tobias Buer, 2017. "Container shipping route design incorporating the costs of shipping, inland/feeder transport, inventory and CO2 emission," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(4), pages 667-694, December.
    18. Joseph, Lambert & Giles, Thomas & Nishatabbas, Rehmatulla & Tristan, Smith, 2021. "A techno-economic environmental cost model for Arctic shipping," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 28-51.
    19. Zhao, Hui & Hu, Hao & Lin, Yisong, 2016. "Study on China-EU container shipping network in the context of Northern Sea Route," Journal of Transport Geography, Elsevier, vol. 53(C), pages 50-60.
    20. Zeng, Qingcheng & Lu, Tingyu & Lin, Kun-Chin & Yuen, Kum Fai & Li, Kevin X., 2020. "The competitiveness of Arctic shipping over Suez Canal and China-Europe railway," Transport Policy, Elsevier, vol. 86(C), pages 34-43.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:153:y:2021:i:c:s1366554521001897. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.