IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v140y2020ics1366554520306426.html
   My bibliography  Save this article

An eigenvector centrality analysis of world container shipping network connectivity

Author

Listed:
  • Cheung, Kam-Fung
  • Bell, Michael G.H.
  • Pan, Jing-Jing
  • Perera, Supun

Abstract

Container shipping accounts for most of the world merchandise trade. Better maritime connectivity leads to lower freight rates and greater economic growth. This paper presents a novel max–min integer optimization model to facilitate better shipping network connectivity by analysing the largest eigenvalue and its corresponding eigenvector of the (asymmetric) frequency weighted adjacency matrix. An algorithm is presented that can quickly identify which link not currently in the container shipping network would best improve its connectivity. A demand matrix is not required by this method of analysis and network symmetry is not assumed. The method could strengthen direct connection between port pairs.

Suggested Citation

  • Cheung, Kam-Fung & Bell, Michael G.H. & Pan, Jing-Jing & Perera, Supun, 2020. "An eigenvector centrality analysis of world container shipping network connectivity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
  • Handle: RePEc:eee:transe:v:140:y:2020:i:c:s1366554520306426
    DOI: 10.1016/j.tre.2020.101991
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554520306426
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2020.101991?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. César Ducruet & Sung-Woo Lee & Adolf K.Y. Ng, 2010. "Centrality and vulnerability in liner shipping networks: revisiting the Northeast Asian port hierarchy," Maritime Policy & Management, Taylor & Francis Journals, vol. 37(1), pages 17-36, January.
    2. César Ducruet & Theo Notteboom, 2012. "The worldwide maritime network of container shipping : Spatial structure and regional dynamics," Post-Print hal-03246962, HAL.
    3. Liu, Honglu & Tian, Zhihong & Huang, Anqiang & Yang, Zaili, 2018. "Analysis of vulnerabilities in maritime supply chains," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 475-484.
    4. Marco Fugazza, 2015. "Maritime Connectivity And Trade," UNCTAD Blue Series Papers 70, United Nations Conference on Trade and Development.
    5. González Laxe, Fernando & Jesus Freire Seoane, Maria & Pais Montes, Carlos, 2012. "Maritime degree, centrality and vulnerability: port hierarchies and emerging areas in containerized transport (2008–2010)," Journal of Transport Geography, Elsevier, vol. 24(C), pages 33-44.
    6. Gordon Wilmsmeier & Jan Hoffmann, 2008. "Liner Shipping Connectivity and Port Infrastructure as Determinants of Freight Rates in the Caribbean," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 10(1-2), pages 130-151, March.
    7. Yuhong Wang & Kevin Cullinane, 2008. "Measuring Container Port Accessibility: An Application of the Principal Eigenvector Method (PEM)," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 10(1-2), pages 75-89, March.
    8. César Ducruet & Faraz Zaidi, 2012. "Maritime constellations : A complex network approach to shipping and ports," Post-Print hal-03246963, HAL.
    9. Chengliang Liu & Jiaqi Wang & Hong Zhang, 2018. "Spatial heterogeneity of ports in the global maritime network detected by weighted ego network analysis," Maritime Policy & Management, Taylor & Francis Journals, vol. 45(1), pages 89-104, January.
    10. Xu, Mengqiao & Li, Zhenfu & Shi, Yanlei & Zhang, Xiaoling & Jiang, Shufei, 2015. "Evolution of regional inequality in the global shipping network," Journal of Transport Geography, Elsevier, vol. 44(C), pages 1-12.
    11. Agustina Calatayud & Roberto Palacin & John Mangan & Elizabeth Jackson & Aurora Ruiz-Rua, 2016. "Understanding connectivity to international markets: a systematic review," Transport Reviews, Taylor & Francis Journals, vol. 36(6), pages 713-736, November.
    12. Tovar, Beatriz & Hernández, Rubén & Rodríguez-Déniz, Héctor, 2015. "Container port competitiveness and connectivity: The Canary Islands main ports case," Transport Policy, Elsevier, vol. 38(C), pages 40-51.
    13. César Ducruet & Faraz Zaidi, 2012. "Maritime constellations: a complex network approach to shipping and ports," Maritime Policy & Management, Taylor & Francis Journals, vol. 39(2), pages 151-168, March.
    14. Biswa Bhattacharyay, 2012. "Seamless sustainable transport connectivity in Asia and the Pacific: prospects and challenges," International Economics and Economic Policy, Springer, vol. 9(2), pages 147-189, June.
    15. Wang, Yuhong & Cullinane, Kevin, 2016. "Determinants of port centrality in maritime container transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 326-340.
    16. Wilmsmeier, Gordon & Hoffmann, Jan & Sanchez, Ricardo J., 2006. "The Impact of Port Characteristics on International Maritime Transport Costs," Research in Transportation Economics, Elsevier, vol. 16(1), pages 117-140, January.
    17. César Ducruet & Sung-Woo Lee & Adolf Ng, 2010. "Centrality and vulnerability in liner shipping networks : revisiting the Northeast Asian port hierarchy," Post-Print hal-03246966, HAL.
    18. César Ducruet & Liehui Wang, 2018. "China’s Global Shipping Connectivity: Internal and External Dynamics in the Contemporary Era (1890–2016)," Post-Print halshs-01832319, HAL.
    19. Hu, Yihong & Zhu, Daoli, 2009. "Empirical analysis of the worldwide maritime transportation network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(10), pages 2061-2071.
    20. César Ducruet & Chengjin Wang, 2018. "China’s global shipping connectivity : internal and external dynamics in the contemporary era (1890–2016)," Post-Print hal-03246918, HAL.
    21. César Ducruet & Faraz Zaidi, 2012. "Maritime constellations: A complex network approach to shipping and ports," Post-Print halshs-00551207, HAL.
    22. Wei, P. & Chen, L. & Sun, D., 2014. "Algebraic connectivity maximization of an air transportation network: The flight routes’ addition/deletion problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 13-27.
    23. Jiang, Jianlin & Lee, Loo Hay & Chew, Ek Peng & Gan, Chee Chun, 2015. "Port connectivity study: An analysis framework from a global container liner shipping network perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 73(C), pages 47-64.
    24. César Ducruet & Theo E. Notteboom, 2012. "The worldwide maritime network of container shipping: Spatial structure and regional dynamics," Post-Print halshs-00538051, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hiroe Ando & Fumitaka Kurauchi, 2021. "How Does Travel Demand Follow the Change in Infrastructure? Multiple-Year Eigenvector Centrality Analysis," Sustainability, MDPI, vol. 13(23), pages 1-18, December.
    2. Jin, Lianjie & Chen, Jing & Chen, Zilin & Sun, Xiangjun & Yu, Bin, 2022. "Impact of COVID-19 on China's international liner shipping network based on AIS data," Transport Policy, Elsevier, vol. 121(C), pages 90-99.
    3. Feng, Hongxiang & Grifoll, Manel & Yang, Zhongzhen & Zheng, Pengjun & Martin-Mallofre, Agustí, 2020. "Visualization of container throughput evolution of the Yangtze River Delta multi-port system: the ternary diagram method," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    4. Hou, Weilu & Shi, Qin & Guo, Liquan, 2022. "Impacts of COVID-19 pandemic on foreign trade intermodal transport accessibility: Evidence from the Yangtze River Delta region of mainland China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 419-438.
    5. Gu, Bingmei & Liu, Jiaguo, 2022. "Determinants of dry bulk shipping freight rates: Considering Chinese manufacturing industry and economic policy uncertainty," Transport Policy, Elsevier, vol. 129(C), pages 66-77.
    6. Yap, Wei Yim & Hsieh, Cheng-Hsien & Lee, Paul Tae-Woo, 2023. "Shipping connectivity data analytics: Implications for maritime policy," Transport Policy, Elsevier, vol. 132(C), pages 112-127.
    7. César Ducruet, 2020. "The geography of maritime networks: A critical review," Post-Print halshs-02922543, HAL.
    8. Tocchi, Daniela & Sys, Christa & Papola, Andrea & Tinessa, Fiore & Simonelli, Fulvio & Marzano, Vittorio, 2022. "Hypergraph-based centrality metrics for maritime container service networks: A worldwide application," Journal of Transport Geography, Elsevier, vol. 98(C).
    9. Ducruet, César, 2020. "The geography of maritime networks: A critical review," Journal of Transport Geography, Elsevier, vol. 88(C).
    10. Cheung, Kam-Fung & Bell, Michael G.H. & Bhattacharjya, Jyotirmoyee, 2021. "Cybersecurity in logistics and supply chain management: An overview and future research directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    11. Bai, Xiwen & Ma, Zhongjun & Zhou, Yaoming, 2023. "Data-driven static and dynamic resilience assessment of the global liner shipping network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    12. Mhd Ruslan, Siti Marsila & Mokhtar, Kasypi, 2020. "An Analysis of Price Disparity: Peninsular Malaysia and Sabah," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 54(2), pages 53-66.
    13. Li, Weijun & Bai, Xiwen & Yang, Dong & Hou, Yao, 2023. "Maritime connectivity, transport infrastructure expansion and economic growth: A global perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. César Ducruet, 2020. "The geography of maritime networks: A critical review," Post-Print halshs-02922543, HAL.
    2. Tocchi, Daniela & Sys, Christa & Papola, Andrea & Tinessa, Fiore & Simonelli, Fulvio & Marzano, Vittorio, 2022. "Hypergraph-based centrality metrics for maritime container service networks: A worldwide application," Journal of Transport Geography, Elsevier, vol. 98(C).
    3. Nicanor García Álvarez & Belarmino Adenso-Díaz & Laura Calzada-Infante, 2021. "Maritime Traffic as a Complex Network: a Systematic Review," Networks and Spatial Economics, Springer, vol. 21(2), pages 387-417, June.
    4. Zhang, Qiang & Pu, Shunhao & Luo, Lihua & Liu, Zhichao & Xu, Jie, 2022. "Revisiting important ports in container shipping networks: A structural hole-based approach," Transport Policy, Elsevier, vol. 126(C), pages 239-248.
    5. Jin, Lianjie & Chen, Jing & Chen, Zilin & Sun, Xiangjun & Yu, Bin, 2022. "Impact of COVID-19 on China's international liner shipping network based on AIS data," Transport Policy, Elsevier, vol. 121(C), pages 90-99.
    6. Ducruet, César, 2020. "The geography of maritime networks: A critical review," Journal of Transport Geography, Elsevier, vol. 88(C).
    7. Tovar, Beatriz & Hernández, Rubén & Rodríguez-Déniz, Héctor, 2015. "Container port competitiveness and connectivity: The Canary Islands main ports case," Transport Policy, Elsevier, vol. 38(C), pages 40-51.
    8. Calatayud, Agustina & Mangan, John & Palacin, Roberto, 2017. "Connectivity to international markets: A multi-layered network approach," Journal of Transport Geography, Elsevier, vol. 61(C), pages 61-71.
    9. Nguyen Tran & Hans-Dietrich Haasis, 2014. "Empirical analysis of the container liner shipping network on the East-West corridor (1995–2011)," Netnomics, Springer, vol. 15(3), pages 121-153, November.
    10. Xu, Mengqiao & Li, Zhenfu & Shi, Yanlei & Zhang, Xiaoling & Jiang, Shufei, 2015. "Evolution of regional inequality in the global shipping network," Journal of Transport Geography, Elsevier, vol. 44(C), pages 1-12.
    11. Ge, Jiawei & fu, Qiang & Zhang, Qiang & Wan, Zheng, 2022. "Regional operating patterns of world container shipping network: A perspective from motif identification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    12. Deng, Ping & Song, Lian & Xiao, Ruiqi & Huang, Chengfeng, 2022. "Evaluation of logistics and port connectivity in the Yangtze River Economic Belt of China," Transport Policy, Elsevier, vol. 126(C), pages 249-267.
    13. Liu, Qing & Yang, Yang & Ke, Luqi & Ng, Adolf K.Y., 2022. "Structures of port connectivity, competition, and shipping networks in Europe," Journal of Transport Geography, Elsevier, vol. 102(C).
    14. Yu, Hongchu & Fang, Zhixiang & Lu, Feng & Murray, Alan T. & Zhang, Hengcai & Peng, Peng & Mei, Qiang & Chen, Jinhai, 2019. "Impact of oil price fluctuations on tanker maritime network structure and traffic flow changes," Applied Energy, Elsevier, vol. 237(C), pages 390-403.
    15. Achilleas Tsantis & John Mangan & Agustina Calatayud & Roberto Palacin, 2023. "Container shipping: a systematic literature review of themes and factors that influence the establishment of direct connections between countries," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(4), pages 667-697, December.
    16. César Ducruet & Hidekazu Itoh & Justin Berli, 2020. "Urban gravity in the global container shipping network," Post-Print halshs-02588449, HAL.
    17. Jung, Paul H. & Thill, Jean-Claude, 2022. "Sea-land interdependence and delimitation of port hinterland-foreland structures in the international transportation system," Journal of Transport Geography, Elsevier, vol. 99(C).
    18. Ducruet, César & Itoh, Hidekazu & Berli, Justin, 2020. "Urban gravity in the global container shipping network," Journal of Transport Geography, Elsevier, vol. 85(C).
    19. Sugimura, Yoshihisa & Akakura, Yasuhiro & Yotsushima, Tatsuki & Kawasaki, Tomoya, 2023. "Evaluation of Japanese port policies through network analysis," Transport Policy, Elsevier, vol. 135(C), pages 59-70.
    20. Hongchu Yu & Zhixiang Fang & Guojun Peng & Mingxiang Feng, 2017. "Revealing the Linkage Network Dynamic Structures of Chinese Maritime Ports through Automatic Information System Data," Sustainability, MDPI, vol. 9(10), pages 1-17, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:140:y:2020:i:c:s1366554520306426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.